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The (n — 1)-Width-Volume Inequality

Theorem (Guth 2007)

There are universal constants C(n) such that:
Every open bounded subset U C R" satisfies

n—1

W(U) < C(n)vol,(U) =

Theorem (Burago & Ivanov 1995)
The 3-torus admits a metrics T, = (T3, g) with:

vol(Tyx) =1 and W(Ty) > k

(The Width-Volume Inequality doesn’t hold for general manifolds.)
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Sketch of the Sweep-Out Construction

e Use an isoperimetric inequality to subdivide M into parts.

Iterate the subdivision process until all parts are small volume.

Estimate width of small parts by the area of their boundaries.

Assemble the sweep outs of parts to global sweep out.

We needed:
e Control over the isoperimetric constant.

e An estimate of multiplicities of covers by balls

of small volume and boundary area.
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Geometric Bisection

Theorem (G-A & Zhu)

For any Riemannian 3-sphere
SA(M) < 3HF;(2d)
where d is the diameter of M.

Theorem (Papasoglu & Swenson 2016)
There exist Riemannian 3-spheres My = (S3, gi) such that:

vol3(My) = 1, diam(My) = 1, and SA(My) > k.
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Sketch for Bisecting Surfaces

Suppose there are no such bisecting surfaces.

Small volume fillings M \ X for lots of ¥ C M

Construct a chain map from a contractible complex to C,(M).
Obtain a contradiction to H3(M) # 0.

Desingularize the cycle to obtain a surface.
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Are there universal constants e(n) such that:
Every open bounded subset U C R" with vol,(U) < €(n)
admits an expanding embedding U <5 B"(1)?

Theorem (G-A)

If U is an open bounded Jordan measurable set in the plane and
area(U) < 1/10 then
USSR x[0,1]
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