
FVWM(1) Fvwm 2.6.9 FVWM(1)

NAME
Fvwm - F? Virtual Window Manager for X11

SYNOPSIS
fvwm [-c config-command] [-d displayname] [-f config-file] [-r] [-s [screen_num]] [-V]

[-C visual-class | -I visual-id] [-l colors [-L] [-A] [-S] [-P]] [-D] [-h] [-i client-id]
[-F state-file] [--debug-stack-ring] [-blackout]

DESCRIPTION
Fvwm is a window manager for X11. It is designed to minimize memory consumption, provide a 3D look
to window frames, and a virtual desktop.

Note that there are several window managers around that have "fvwm" in their name. In the past, version
2.x of fvwm was commonly called fvwm2 to distinguish it from the former version 1.x (fvwm or even
fvwm1). Since version 1.x has been replaced by version 2.x a long time ago we simply call version 2.x and
all versions to come, fvwm, throughout this document, and the executable program is named fvwm. There
is an fvwm offspring called fvwm95, it is mostly a patched version of fvwm-2.0.43. The main goal of
fvwm95 was to supply a Windows 95 like look and feel. Since then, fvwm has been greatly enhanced and
practically all fvwm95 features can be achieved by fvwm.

Fvwm provides both a large virtual desktop and multiple disjoint desktops which can be used separately or
together. The virtual desktop allows you to pretend that your video screen is really quite large, and you can
scroll around within the desktop. The multiple disjoint desktops allow you to pretend that you really have
several screens to work at, but each screen is completely unrelated to the others.

Fvwm provides keyboard accelerators that allow you to perform most window manager functions,
including moving and resizing windows and operating the menus, using keyboard shortcuts.

Fvwm has also overcome the distinction between configuration commands and action commands that most
window managers make. Configuration commands typically set fonts, colors, menu contents, and key and
mouse function bindings, while action commands do things like raise and lower windows. Fvwm makes no
such distinction and allows anything to be changed at any time.

Other noteworthy differences between fvwm and other X11 window managers are the introduction of the
SloppyFocus and NeverFocus focus methods. Focus policy can be separately specified for different window
groups. Windows using SloppyFocus acquire focus when the pointer moves into them and retain focus until
some other window acquires it. Such windows do not lose focus when the pointer moves into the root
window. The NeverFocus policy is provided for use with windows into which one never types (e.g. xclock,
oclock, xbiff, xeyes, tuxeyes) - for example, if a SloppyFocus terminal window has focus, moving the
pointer over a NeverFocus decoration window does not deprive the terminal of focus.

OPTIONS
These are the command line options that are recognized by fvwm:

-i | --clientid id
This option is used when fvwm is started by a session manager. Should not be used by a user.

-c | --cmd config-command
Causes fvwm to use config-command instead of ’Read config’ (or ’Read .fvwm2rc’) as its
initialization command. (Note that up to 10 -f and -c parameters can be given, and they are executed
in the order specified.)

Any module started by command line arguments is assumed to be a module that sends back config
commands. All command line modules have to quit before fvwm proceeds on to the StartFunction
and setting border decorations and styles. There is a potential deadlock if you start a module other
than FvwmCpp/FvwmM4/FvwmPerl but there is a timeout so fvwm eventually gets going.

As an example, starting the pager this way hangs fvwm until the timeout, but the following should
work well:

05-Sep-2019 1

FVWM(1) Fvwm 2.6.9 FVWM(1)

fvwm -c "AddToFunc StartFunction I Module FvwmPager"

-d | --display displayname
Manage the display called displayname instead of the name obtained from the environment variable
$DISPLAY.

-D | --debug
Puts X transactions in synchronous mode, which dramatically slows things down, but guarantees that
fvwm’s internal error messages are correct. Also causes fvwm to output debug messages while
running.

-f config-file
Causes fvwm to read config-file instead of ˜/.fvwm/config as its initialization file. This is equivalent to
-c ’Read config-file’.

-h | --help
A short usage description is printed.

-r | --replace
Try to take over from a previously running wm. This does not work unless the other wm is ICCCM2
2.0 compliant.

-F | --restore state-file
This option is used when fvwm is started by a session manager. Should not be used by a user.

-s | --single-screen [screen_num]
On a multi-screen display, run fvwm only on the screen named in the $DISPLAY environment variable
or provided through the -d option. The optional argument screen_num should be positive or null and
override the screen number. Normally, fvwm attempts to start up on all screens of a multi-screen
display.

-V | --version
Prints the version of fvwm to stderr. Also prints an information about the compiled in support for
readline, rplay, stroke, xpm, png, svg, GNOME hints, EWMH hints, session management,
bidirectional text, multibyte characters, xinerama and Xft aa font rendering.

-C | --visual visual-class
Causes fvwm to use visual-class for the window borders and menus. visual-class can be
"StaticGray", "GrayScale", "StaticColor", "PseudoColor", "TrueColor" or "DirectColor".

-I | --visualid id
Causes fvwm to use id as the visual id for the window borders and menus. id can be specified as N for
decimal or 0xN for hexadecimal. See man page of xdpyinfo for a list of supported visuals.

-l | --color-limit limit
Specifies a limit on the colors used in image, gradient and possibly simple colors used by fvwm. In
fact, fvwm (and all the modules) uses a palette with at most limit colors. This option is only useful
with screens that display 256 colors (or less) with a dynamic visual (PseudoColor, GrayScale or
DirectColor). The default depends on your X server and how you run fvwm. In most case this default
is reasonable. The -l option should be used only if you encounter problems with colors. By default,
fvwm tries to detect large pre-allocated palettes. If such a palette is detected fvwm uses it and a priori
the -l must not be used. Moreover, in this case the -A and -S options are forced. Note that
XFree-4.2 pre-allocates 244 colors (if you use a driver with Render support) leaving only a few free
colors. This may lead to some color problems (and nothing can be done). XFree-4.3 or better
pre-allocate only 85 colors. If no pre-allocated palette is auto detected the defaults are as follow:

Display depth 8 (256 colors)

PseudoColor: 68 (4x4x4 color cube + 4 grey)
GrayScale: 64 regular grey
DirectColor: 32 (3x3x3 color cube + 5 grey)

Display depth 4 (16 colors)

05-Sep-2019 2

FVWM(1) Fvwm 2.6.9 FVWM(1)

PseudoColor: 10 (2x2x2 color cube + 2 grey)
GrayScale: 8 regular grey
DirectColor: 10 (2x2x2 color cube + 2 grey)

These defaults may change before version 2.6. Note that if you use a private color map (i.e., fvwm is
started with the -C or the -I options), then other defaults are used.

Now what to do if you encounter problems with colors? The first thing to do is to check if you really
cannot run your X server with depth 15, 16 or better. Check your X server documentation. Note that
some hardware can support two different depths on the same screen (typically depth 8 and depth 24).
If depth 8 is the default, you can force fvwm to use the best depth by using the -C option with
TrueColor as argument. So now we assume that you are forced to run in depth 8 with a dynamic
visual because your hardware/driver cannot do better or because you need to use an application which
needs to run under this mode (e.g., because this application needs read-write colors). What it should
be understand is that you have only 256 colors and that all the applications which use the default color
map must share these colors. The main problem is that there are applications which use a lot or even
all the colors. If you use such application you may have no more free colors and some applications
(which used only a few colors) may fail to start or are unusable. There are three things that can be
done (and fvwm does not really play a particular role, all applications are concerned). The first is to
run the applications which waste your (default) color map with a private color map. For example, run
netscape with the -install option, run KDE or QT applications with the --cmap option, use the -C
option for fvwm. The disadvantage of this method is that it is visually disturbing (see the
ColormapFocus command for a better control of the color maps switching). The second method is to
limit the number of colors that the applications use. Again, some applications have options to specify
a given color limit. With fvwm you may try various values, 61 (a special "visual" palette), 56 (a 4x4x3
color cube plus 6 grey), 29 (a 3x3x3 color cube plus 2 grey), 10 or 9. Also, you may use the -L
option. However, limiting the number of colors is not the definitive solution. The definitive solution is
to try cause applications which use a lot of colors use the same colors. This is a difficult task as there
are no formal standards for this goal. However, some toolkits as QT and GTK use color cubes as
palettes. So, the idea is to configure your applications/toolkits to all use the same color cube.
Moreover, you can use the colors in this color cube in your X resources configuration files and/or as
arguments to colors options. Fvwm can use any color cube of the form RxGxB with 2 <= R <= 6, R =
G, R-1 =< B <= R and B >= 2. To get an RxGxB color cube give an argument to -l an integer c >=
R*G*B and < (R+1)*(G+1)*B if B=R and < R*G*(B+1) if B < R (and different from 61). If c >
R*G*B, then some grey may be added to the color cube. You can use the PrintInfo Colors [1]
command to get information on your fvwm colors setting. In particular, this command prints the
palette used by fvwm in rgb format (the last integer gives the number of times fvwm has allocated the
colors).

-L | --strict-color-limit
If the screen displays 256 colors (or less) and has a dynamic visual, causes fvwm to use its palette for
all the colors. By default, the palette is used only for images and gradients.

-P | --visual-palette
If the screen displays 256 colors (or less) and has a dynamic visual, this option causes fvwm to use a
palette designed for limiting the "visual" color distance between the points of the palette. Moreover,
for better color sharing, if possible colors with a name in the X rgb data base are used for defining the
colors (with the hope that applications and images prefer to use named colors). If the -l option is not
used this palette has 61 colors. This palette is also automatically selected if 61 or 9 is used as
argument to the -l option.

-A | --allocate-palette
If the screen displays 256 colors (or less) and has a dynamic visual this option causes fvwm to allocate
all the colors of its palette at start up for reserving these colors for future use. This option forces the
-static-palette option. By default, fvwm allocates (reserves) a color in its palette only if it needs this
color.

05-Sep-2019 3

FVWM(1) Fvwm 2.6.9 FVWM(1)

-S | --static-palette
If the screen displays 256 colors (or less) and has a dynamic visual this option causes fvwm to never
free the colors in its palette. By default, when fvwm does not need a color any more it frees this color
so that a new color can be used. This option may speed up image loading and save a few bits of
memory.

-blackout
This option is provided for backward compatibility only. Blacking out the screen during startup is not
necessary (and doesn’t work) anymore. This option will be removed in the future.

--debug-stack-ring
Enables stack ring debugging. This option is only intended for internal debugging and should only be
used by developers.

ANATOMY OF A WINDOW
Fvwm puts a decorative border around most windows. This border consists of a bar on each side and a
small L-shaped section on each corner. There is an additional top bar called the title-bar which is used to
display the name of the window. In addition, there are up to 10 title-bar buttons. The top, side, and bottom
bars are collectively known as the side-bars. The corner pieces are called the frame.

With the built-in minimal configuration, dragging mouse button 1 in the frame or side-bars begins a resize
operation on the window. Dragging mouse button 2 in the frame or side-bars begins a move operation.
There are raise/lower operations bound to a single clicking on borders. Similarly for the window title.

Up to ten title-bar buttons may exist. Their use is completely user definable. One popular configuration
uses one button on the left that is used to bring up a list of window options and two buttons on the right
used to iconify and maximize the window. Another popular configuration adds a close button to the right.
The number of title-bar buttons used depends on which ones have mouse actions bound to them. See the
Mouse command.

THE VIRTUAL DESKTOP
Fvwm provides multiple virtual desktops for users who wish to use them. The screen is a viewport onto a
desktop which may be larger than the screen. Several distinct desktops can be accessed (concept: one
desktop for each project, or one desktop for each application, when view applications are distinct). Since
each desktop can be larger than the physical screen, divided into m by n pages which are each the size of
the physical screen, windows which are larger than the screen or large groups of related windows can easily
be viewed.

The (m by n) size (i.e. number of pages) of the virtual desktops can be changed any time, by using the
DesktopSize command. All virtual desktops must be (are) the same size. The total number of distinct
desktops does not need to be specified, but is limited to approximately 4 billion total. All windows on a
range of desktops can be viewed in the FvwmPager, a miniature view of the desktops. The pager is an
accessory program, called a module, which is not essential for the window manager to operate. Windows
may also be listed using the WindowList command or the FvwmIconMan module.

Fvwm keeps the windows on the desktop in a layered stacking order; a window in a lower layer never
obscures a window in a higher layer. The layer of a window can be changed by using the Layer command.
The concept of layers is a generalization of the StaysOnTop flag of older fvwm versions. The StaysOnTop
and StaysPut Style options are now implemented by putting the windows in suitable layers and the
previously missing StaysOnBottom Style option has been added.

Sticky windows are windows which transcend the virtual desktop by "Sticking to the screen’s glass". They
always stay put on the screen. This is convenient for things like clocks and xbiffs, so you only need to run
one such gadget and it always stays with you. Icons can also be made to stick to the glass, if desired.

Window geometries are specified relative to the current viewport. That is:

xterm -geometry +0+0

creates a window in the upper left hand corner of the visible portion of the screen. It is permissible to
specify geometries which place windows on the virtual desktop, but off the screen. For example, if the

05-Sep-2019 4

FVWM(1) Fvwm 2.6.9 FVWM(1)

visible screen is 1000 by 1000 pixels, and the desktop size is 3x3, and the current viewport is at the upper
left hand corner of the desktop, invoking:

xterm -geometry +1000+1000

places a window just off of the lower right hand corner of the screen. It can be found by moving the mouse
to the lower right hand corner of the screen and waiting for it to scroll into view. A geometry specified as
something like:

xterm -geometry -5-5

places the window’s lower right hand corner 5 pixels from the lower right corner of the visible portion of
the screen. Not all applications support window geometries with negative offsets. Some applications place
the window’s upper right hand corner 5 pixels above and to the left of the upper left hand corner of the
screen; others may do just plain bizarre things.

There are several ways to cause a window to map onto a desktop or page other than the currently active
one. The geometry technique mentioned above (specifying x,y coordinates larger than the physical screen
size), however, suffers from the limitation of being interpreted relative to the current viewport: the window
may not consistently appear on a specific page, unless you always invoke the application from the same
page.

A better way to place windows on a different page, screen or desk from the currently mapped viewport is to
use the StartsOnPage or StartsOnScreen style specification (the successors to the older StartsOnDesk style)
in your config file. The placement is consistent: it does not depend on your current location on the virtual
desktop.

Some applications that understand standard Xt command line arguments and X resources, like xterm and
xfontsel, allow the user to specify the start-up desk or page on the command line:

xterm -xrm "*Desk:1"

starts an xterm on desk number 1;

xterm -xrm "*Page:3 2 1"

starts an xterm two pages to the right and one down from the upper left hand page of desk number 3. Not
all applications understand the use of these options, however. You could achieve the same results with the
following lines in your .Xdefaults file:

XTerm*Desk: 1

or

XTerm*Page: 3 2 1

USE ON MULTI-SCREEN DISPLAYS
If the -s command line argument is not given, fvwm automatically starts up on every screen on the
specified display. After fvwm starts each screen is treated independently. Restarts of fvwm need to be
performed separately on each screen. The use of

EdgeScroll 0 0

is strongly recommended for multi-screen displays. You may need to quit on each screen to quit from the
X session completely. This is not to be confused with Xinerama support.

XINERAMA SUPPORT
Fvwm supports the Xinerama extension of newer X servers which is similar to multi head support (multiple
screens) but allows one to move windows between screens. If Xinerama support has been compiled into
fvwm, it is used whenever fvwm runs on an X server that supports and uses multiple screens via Xinerama.
Without this option, the whole desktop is treated as one big screen. For example, menus might pop up right

05-Sep-2019 5

FVWM(1) Fvwm 2.6.9 FVWM(1)

between two screens. The EdgeResistance option of the Style command command allows for specifying an
explicit resistance value for moving windows over the screen edge between two Xinerama screens.
Xinerama support can be enabled or disabled on the fly or from the configuration file with the Xinerama
command. Many modules and commands work nicely with Xinerama displays.

Whenever a geometry in the usual X format can be supplied, fvwm’s Xinerama extension allows for
specifying a screen in addition to the geometry (or even the screen alone). To do this, a ’@’ is added to the
end of the geometry string followed by either the screen number or a letter. A number is taken as the
number of the Xinerama screen to be used (as configured in the X server). The letter can be one of ’g’ for
the global screen (the rectangle that encloses all Xinerama screens), ’p’ for the primary screen (see below),
’c’ for the current screen (the one that currently contains the pointer). If the X server does not support
Xinerama or only one screen is used, the screen bit is ignored.

Style * IconBox 64x300-0-0@p

Xinerama support can be configured to use a primary screen. Fvwm can be configured to place new
windows and icons on this screen. The primary screen is screen 0 by default but can be changed with the
XineramaPrimaryScreen command.

Xinerama support was designed to work out of the box with the same configuration file that would work on
a single screen. It may not perform very well if the involved screens use different screen resolutions. In
this situation, windows may get stuck in the portion of the whole desktop that belongs to neither screen.
When this happens, the windows or icons can be retrieved with the command

All MoveToScreen

that can be entered in an FvwmConsole window or with FvwmCommand.

For multi-screen implementations other than Xinerama, such as Single Logical Screen, it is possible to
simulate a Xinerama configuration if the total screen seen by fvwm is made up of equal sized monitors in a
rectangular grid. The commands XineramaSls, XineramaSlsSize and XineramaSlsScreens are used to
configure this feature.

INITIALIZATION
During initialization, fvwm searches for a configuration file which describes key and button bindings, and
many other things. The format of these files is described later. Fvwm first searches for configuration files
using the command

Read config

This looks for file config in $FVWM_USERDIR and $FVWM_DATADIR directories, as described in Read.
If this fails more files are queried for backward compatibility. Here is the complete list of all file locations
queried in the default installation (only the first found file is used):

$HOME/.fvwm/config
/usr/local/share/fvwm/config

$HOME/.fvwm/.fvwm2rc
$HOME/.fvwm2rc
/usr/local/share/fvwm/.fvwm2rc
/usr/local/share/fvwm/system.fvwm2rc
/etc/system.fvwm2rc

Please note, the last 5 locations are not guaranteed to be supported in the future.

If a configuration file is not found, the left mouse button, or Help or F1 keys on the root window bring up
menus and forms that can create a starting configuration file.

Fvwm sets two environment variables which are inherited by its children. These are $DISPLAY which
describes the display on which fvwm is running. $DISPLAY may be unix:0.0 or :0.0, which doesn’t work
too well when passed through ssh to another machine, so $HOSTDISPLAY is set to a network-ready
description of the display. $HOSTDISPLAY always uses the TCP/IP transport protocol (even for a local

05-Sep-2019 6

FVWM(1) Fvwm 2.6.9 FVWM(1)

connection) so $DISPLAY should be used for local connections, as it may use Unix-domain sockets, which
are faster.

If you want to start some applications or modules with fvwm, you can simply put

Exec app

or

Module FvwmXxx

into your config, but it is not recommended; do this only if you know what you are doing. It is usually
important to start applications or modules after the entire config is read, because it contains styles or
module configurations which can affect window appearance and functionality.

The standard way to start applications or modules on fvwm’s start up is to add them to an initialization
function (usually StartFunction or InitFunction). This way they are only started after fvwm finishes to
read and execute config file.

Fvwm has three special functions for initialization: StartFunction, which is executed on startups and
restarts; InitFunction and RestartFunction, which are executed during initialization and restarts
(respectively) just after StartFunction. These functions may be customized in a user’s config file using the
AddToFunc command (described later) to start up modules, xterms, or whatever you’d like to have started
by fvwm.

Fvwm has also a special exit function: ExitFunction, executed when exiting or restarting before actually
quitting. It could be used to explicitly kill modules, etc.

If fvwm is run under a session manager, functions SessionInitFunction and SessionRestartFunction are
executed instead of InitFunction and RestartFunction. This helps to define the user’s config file to be good
for both running under a session manager and without it. Generally it is a bad idea to start xterms or other
applications in "Session*" functions. Also someone can decide to start different modules while running
under a session manager or not. For the similar purposes SessionExitFunction is used instead of
ExitFunction.

DestroyFunc StartFunction
AddToFunc StartFunction
+ I Module FvwmPager * *
+ I Module FvwmButtons

DestroyFunc InitFunction
AddToFunc InitFunction
+ I Module FvwmBanner
+ I Module FvwmIconMan
+ I Exec xsetroot -solid cyan
+ I Exec xterm
+ I Exec netscape

DestroyFunc RestartFunction
AddToFunc RestartFunction
+ I Module FvwmIconMan

DestroyFunc SessionInitFunction
AddToFunc SessionInitFunction
+ I Module FvwmBanner

DestroyFunc SessionRestartFunction
AddToFunc SessionRestartFunction
+ I Nop

05-Sep-2019 7

FVWM(1) Fvwm 2.6.9 FVWM(1)

You do not need to define all special functions if some are empty. Also note, all these special functions
may be emulated now using StartFunction and ExitFunction, like this:

DestroyFunc StartFunction
AddToFunc StartFunction
+ I Test (Init) Module FvwmBanner
+ I Module FvwmPager * *
+ I Test (Restart) Beep

DestroyFunc ExitFunction
AddToFunc ExitFunction
+ I Test (Quit) Echo Bye-bye
+ I KillModule MyBuggyModule
+ I Test (ToRestart) Beep

COMPILATION OPTIONS
Fvwm has a number of compile-time options. If you have trouble using a certain command or feature,
check to see if support for it was included at compile time. Optional features are described in the config.h
file that is generated during compilation.

ICONS AND IMAGES
Fvwm can load .xbm, .xpm, .png and .svg images. XBM images are monochrome. Fvwm can always
display XBM files. XPM and PNG formats are color images. SVG is a vector graphics image format.
Compile-time options determine whether fvwm can display XPM, PNG or SVG icons and images. See
the INSTALL.fvwm file for more information.

The related SHAPE compile-time option can make fvwm display spiffy shaped icons.

SVG rendering options
SVG images are generated from (XML) text files. A really simple SVG file might look something like this:

<svg width="120" height="80">
<rect fill="red" width="40" height="40" x="0" y="0" />
<rect fill="lime" width="40" height="40" x="40" y="0" />
<rect fill="blue" width="40" height="40" x="80" y="0" />
<rect fill="cyan" width="40" height="40" x="0" y="40" />
<rect fill="magenta" width="40" height="40" x="40" y="40" />
<rect fill="yellow" width="40" height="40" x="80" y="40" />

</svg>

By default, SVG images are rendered as the image creator intended them to. But since SVG is a vector
graphics format, the images can be rendered at any chosen size and rotation, e.g. making it possible to use
the same icon file rendered at different sizes for the Icon and MiniIcon styles.

The rendering options are specified as a string appended to the SVG filename as follows:

image.svg:[!] [(1) size] [(2) position] [(3) rotation] [(4) scale] ...

(1) [-]width{x}[-]height
(2) {- | +}xpos{- | +}ypos
(3) @[-]angle
(4) {* | /}[-]factor[x | y]

The option string always starts with a colon (’:’) to separate it from the filename. An empty option string
can skip this colon, but it might still be a good idea to include it to prevent ambiguity if the filename
contains any colon.

filename_without_colon.svg
filename:with:colon.svg:

An exclamation point (’!’) transposes the entire final image (including the rendering area), i.e. all the

05-Sep-2019 8

FVWM(1) Fvwm 2.6.9 FVWM(1)

horizontal and all the vertical coordinates are swapped with each other.

image.svg:!

width and height specifies the dimensions of the rendering area in pixels, i.e. the dimensions of the resulting
image. The actual image is fitted to fill the entire rendering area.

image.svg:60x60

Use a width or height value of 0 to keep the aspect ratio.

image.svg:0x60
image.svg:60x0

A ’-’ before width mirrors the rendering area horizontally.

image.svg:-0x0

A ’-’ before height mirrors the rendering area vertically.

image.svg:0x-0

xpos and ypos specifies a translation of the image in pixels. A positive xpos value moves the image to the
right. A positive ypos value moves it down. Moving it partially outside of the rendering area results in a
cropped image.

image.svg:-30-0
image.svg:-0+10
image.svg:-30+10

angle specifies a rotation around the actual image center in degrees. This might result in a cropped image.
A positive value rotates the image clockwise. Floating point values are recognized.

image.svg:@180
image.svg:@-90
image.svg:@30
image.svg:@57.3

factor specifes a scaling of the actual image (not the rendering area). Scaling it up results in a cropped
image. Floating point values are recognized. Division by zero is ignored. If factor is directly followed by
a ’x’ or a ’y’, the scaling is horizontal or vertical respectively. Otherwise the scaling is uniform.

image.svg:*2
image.svg:/2
image.svg:/3x
image.svg:/2y

Scaling down a translated or rotated image can prevent cropping.

image.svg:@30*0.6

Repeated usage of translation, rotation, and scaling is allowed. Translation and rotation are additive.
Scaling is multiplicative.

image.svg:*2/3
image.svg:/3x/2y

When combining affine transformations, the scaling is always done first, then the rotation, and finally the
translation.

05-Sep-2019 9

FVWM(1) Fvwm 2.6.9 FVWM(1)

image.svg:-30+10@30/3x/2y

Use a negative scale factor to mirror the actual image.

image.svg:-30+10@30/-3x/2y

Mirroring of the rendering area is done after any scaling, rotation or translation of the image.

image.svg:-0x0-30+10@30/3x/2y

Transposing is done last of all, after everything else.

image.svg:!-0x0-30+10@30/3x/2y

MODULES
A module is a separate program which runs as a separate Unix process but transmits commands to fvwm to
execute. Users can write their own modules to do any weird or bizarre manipulations without bloating or
affecting the integrity of fvwm itself.

Modules must be spawned by fvwm so that it can set up two pipes for fvwm and the module to
communicate with. The pipes are already open for the module when it starts and the file descriptors for the
pipes are provided as command line arguments.

Modules can be spawned by fvwm at any time during the X session by use of the Module command.
Modules can exist for the duration of the X session, or can perform a single task and exit. If the module is
still active when fvwm is told to quit, then fvwm closes the communication pipes and waits to receive a
SIGCHLD from the module, indicating that it has detected the pipe closure and has exited. If modules fail
to detect the pipe closure fvwm exits after approximately 30 seconds anyway. The number of
simultaneously executing modules is limited by the operating system’s maximum number of
simultaneously open files, usually between 60 and 256.

Modules simply transmit commands to the fvwm command engine. Commands are formatted just as in the
case of a mouse binding in the config setup file. Certain auxiliary information is also transmitted, as in the
sample module FvwmButtons.

Please refer to the Module Commands section for details.

ICCCM COMPLIANCE
Fvwm attempts to be ICCCM 2.0 compliant. Check http://tronche.com/gui/x/icccm/ for more info. In
addition, ICCCM states that it should be possible for applications to receive any keystroke, which is not
consistent with the keyboard shortcut approach used in fvwm and most other window managers. In
particular you cannot have the same keyboard shortcuts working with your fvwm and another fvwm
running within Xnest (a nested X server running in a window). The same problem exists with mouse
bindings.

The ICCCM states that windows possessing the property

WM_HINTS(WM_HINTS):
Client accepts input or input focus: False

should not be given the keyboard input focus by the window manager. These windows can take the input
focus by themselves, however. A number of applications set this property, and yet expect the window
manager to give them the keyboard focus anyway, so fvwm provides a window style, Lenience, which
allows fvwm to overlook this ICCCM rule. Even with this window style it is not guaranteed that the
application accepts focus.

The differences between ICCCM 1.1 and 2.0 include the ability to take over from a running ICCCM 2.0
compliant window manager; thus

fvwm; vi ˜/.fvwm/config; fvwm -replace

resembles the Restart command. It is not exactly the same, since killing the previously running wm may

05-Sep-2019 10

FVWM(1) Fvwm 2.6.9 FVWM(1)

terminate your X session, if the wm was started as the last client in your .Xclients or .Xsession file.

Further additions are support for client-side colormap installation (see the ICCCM for details) and the
urgency hint. Clients can set this hint in the WM_HINTS property of their window and expect the window
manager to attract the user’s attention to the window. Fvwm has two re-definable functions for this
purpose, "UrgencyFunc" and "UrgencyDoneFunc", which are executed when the flag is set/cleared. Their
default definitions are:

AddToFunc UrgencyFunc
+ I Iconify off
+ I FlipFocus
+ I Raise
+ I WarpToWindow !raise 5p 5p
AddToFunc UrgencyDoneFunc
+ I Nop

GNOME COMPLIANCE
Fvwm attempts to be GNOME (version 1) compliant. Check http://www.gnome.org for what that may
mean. To disable GNOME hints for some or all windows, the GNOMEIgnoreHints style can be used.

EXTENDED WINDOW MANAGER HINTS
Fvwm attempts to respect the extended window manager hints (ewmh or EWMH for short) specification:
http://www.freedesktop.org/wiki/Standards_2fwm_2dspec and some extensions of this specification. This
allows fvwm to work with KDE version >= 2, GNOME version 2 and other applications which respect this
specification (any application based on GTK+ version 2). Applications which respect this specification are
called ewmh compliant applications.

This support is configurable with styles and commands. These styles and commands have EWMH as the
prefix (so you can find them easily in this man page).

There is a new Context ’D’ for the Key, PointerKey, Mouse and Stroke commands. This context is for
desktop applications (such as kdesktop and Nautilus desktop).

When a compliant taskbar asks fvwm to activate a window (typically when you click on a button which
represents a window in such a taskbar), then fvwm calls the complex function
EWMHActivateWindowFunc which by default is Iconify Off, Focus and Raise. You can redefine this
function. For example:

DestroyFunc EWMHActivateWindowFunc
AddToFunc EWMHActivateWindowFunc I Iconify Off
+ I Focus
+ I Raise
+ I WarpToWindow 50 50

additionally warps the pointer to the center of the window.

The EWMH specification introduces the notion of Working Area. Without ewmh support the Working
Area is the full visible screen (or all your screens if you have a multi head setup and you use Xinerama).
However, compliant applications (such as a panel) can ask to reserve space at the edge of the screen. If this
is the case, the Working Area is your full visible screen minus these reserved spaces. If a panel can be
hidden by clicking on a button the Working Area does not change (as you can unhide the panel at any time),
but the Dynamic Working Area is updated: the space reserved by the panel is removed (and added again if
you pop up the panel). The Dynamic Working Area may be used when fvwm places or maximizes a
window. To know if an application reserves space you can type "xprop | grep _NET_WM_STRUT" in a
terminal and select the application. If four numbers appear then these numbers define the reserved space as
explained in the EwmhBaseStruts command.

MWM COMPATIBILITY
Fvwm provides options to emulate Motif Window Manager (Mwm) as well as possible. Please refer to the
Emulate command as well as to the Mwm specific options of the Style and MenuStyle commands for

05-Sep-2019 11

FVWM(1) Fvwm 2.6.9 FVWM(1)

details.

OPEN LOOK AND XVIEW COMPATIBILITY
Fvwm supports all the Open Look decoration hints (except pushpins). Should you use any such
application, please add the following line to your config:

Style * OLDecor

Most (perhaps all) Open Look applications have a strange notion of keyboard focus handling. Although a
lot of work went into fvwm to work well with these, you may still encounter problems. It is recommended
to use the NeverFocus focus policy and the Lenience style for all such applications (the windows still get
the focus):

Style <application name> NeverFocus, Lenience

But in case you can not live with that focus policy, you can try using one of the other focus policies in
combination with the Lenience style:

Style <application name> MouseFocus, Lenience
Style <application name> SloppyFocus, Lenience
Style <application name> ClickToFocus, Lenience

M4 PREPROCESSING
M4 pre-processing is handled by a module in fvwm. To get more details, try man FvwmM4. In short, if
you want fvwm to parse your files with m4, then replace the command Read with FvwmM4 in your
˜/.fvwm/config file (if it appears at all), and start fvwm with the command

fvwm -cmd "FvwmM4 config"

CPP PREPROCESSING
Cpp is the C-language pre-processor. fvwm offers cpp processing which mirrors the m4 pre-processing.
To find out about it, re-read the M4 section, but replace "m4" with "cpp".

CONFIGURATION
Configuration Files

The configuration file is used to describe mouse and button bindings, colors, the virtual display size, and
related items. The initialization configuration file is typically called config (or .fvwm2rc). By using the
Read command, it is easy to read in new configuration files as you go.

Lines beginning with ’#’ are ignored by fvwm. Lines starting with ’*’ are expected to contain module
configuration commands (rather than configuration commands for fvwm itself). Like in shell scripts
embedded newlines in a configuration file line can be quoted by preceding them with a backslash. All lines
linked in this fashion are treated as a single line. The newline itself is ignored.

Fvwm makes no distinction between configuration commands and action commands, so anything
mentioned in the fvwm commands section can be placed on a line by itself for fvwm to execute as it reads
the configuration file, or it can be placed as an executable command in a menu or bound to a mouse button
or a keyboard key. It is left as an exercise for the user to decide which function make sense for
initialization and which ones make sense for run-time.

Supplied Configuration
A sample configuration file, is supplied with the fvwm distribution. It is well commented and can be used
as a source of examples for fvwm configuration. It may be copied from /usr/local/share/fvwm/config file.

Alternatively, the built-in menu (accessible when no configuration file is found) has options to create an
initial config file for the user.

FONTS
Font names and font loading

The fonts used for the text of a window title, icon titles, menus and geometry window can be specified by
using the Font and IconFont Style, the Font MenuStyle and the DefaultFont commands. Also, all the

05-Sep-2019 12

FVWM(1) Fvwm 2.6.9 FVWM(1)

Modules which use text have configuration command(s) to specify font(s). All these styles and commands
take a font name as an argument. This section explains what is a font name for fvwm and which fonts
fvwm loads.

First, you can use what we can call a usual font name, for example,

-adobe-courier-bold-r-normal--10-100-75-75-m-60-ISO8859-1
-adobe-courier-bold-r-normal--10-*
-*-fixed-medium-o-normal--14-*-ISO8859-15

That is, you can use an X Logical Font Description (XLFD for short). Then the "first" font which matches
the description is loaded and used. This "first" font depends of your font path and also of your locale.
Fonts which match the locale charset are loaded in priority order. For example with

-adobe-courier-bold-r-normal--10-*

if the locale charset is ISO8859-1, then fvwm tries to load a font which matches

-adobe-courier-bold-r-normal--10-*-ISO8859-1

with the locale charset ISO8859-15 fvwm tries to load

-adobe-courier-bold-r-normal--10-*-ISO8859-15.

A font name can be given as an extended XLFD. This is a comma separated list of (simple) XLFD font
names, for example:

-adobe-courier-bold-r-normal--14-*,-*-courier-medium-r-normal--14-*

Each simple font name is tried until a matching font with the locale charset is found and if this fails each
simple font name is tried without constraint on the charset.

More details on the XLFD can be found in the X manual page, the X Logical Font Description Conventions
document (called xlfd) and the XLoadFont and XCreateFontSet manual pages. Some useful font utilities
are: xlsfonts, xfontsel, xfd and xset.

If you have Xft support you can specify an Xft font name (description) of a true type (or Type1) font
prefixed by "xft:", for example:

"xft:Luxi Mono"
"xft:Luxi Mono:Medium:Roman:size=14:encoding=iso8859-1"

The "first" font which matches the description is loaded. This first font depends on the XftConfig
configuration file with Xft1 and on the /etc/fonts/fonts.conf file with Xft2. One may read the Xft manual
page and the fontconfig man page with Xft2. The first string which follows "xft:" is always considered as
the family. With the second example Luxi Mono is the Family (Other XFree TTF families: "Luxi Serif",
"Luxi Sans"), Medium is the Weight (other possible weights: Light, DemiBold, Bold, Black), Roman is the
slant or the style (other possibilities: Regular, Oblique, Italic) size specifies the point size (for a pixel size
use pixelsize=), encoding allows for enforce a charset (iso8859-1 or iso10646-1 only; if no encoding is
given the locale charset is assumed). An important parameter is "minspace=bool" where bool is True or
False. If bool is False (the default?) Xft gives a greater font height to fvwm than if bool is True. This may
modify text placement, icon and window title height, line spacing in menus and FvwmIdent, button height
in some fvwm modules ...etc. With a LCD monitor you may try to add "rgba=mode" where mode is either
rgb, bgr, vrgb or vbgr to enable subpixel rendering. The best mode depends on the way your LCD cells are
arranged. You can pass other specifications in between ":", as "foundry=foundry_name", "spacing=type"
where type can be monospace, proportional or charcell, "charwidth=integer", "charheight=integer" or
"antialias=bool" where bool is True or False. It seems that these parameters are not always taken in
account.

To determine which Xft fonts are really loaded you can export XFT_DEBUG=1 before starting fvwm and

05-Sep-2019 13

FVWM(1) Fvwm 2.6.9 FVWM(1)

take a look to the error log. With Xft2 you may use fc-list to list the available fonts. Anyway, Xft support
is experimental (from the X and the fvwm point of view) and the quality of the rendering depends on
number of parameters (the XFree and the freetype versions and your video card(s)).

After an Xft font name you can add after a ";" an XLFD font name (simple or extended) as:

xft:Verdana:pixelsize=14;-adobe-courier-bold-r-normal--14-*

then, if either loading the Xft font fails or fvwm has no Xft support, fvwm loads the font
"-adobe-courier-bold-r-normal--14-*". This allows for writing portable configuration files.

Font and string encoding
Once a font is loaded, fvwm finds its encoding (or charset) using its name (the last two fields of the name).
fvwm assumes that the strings which are displayed with this font use this encoding (an exception is that if
an iso10646-1 font is loaded, then UTF-8 is assumed for string encoding). In a normal situation, (i) a font
is loaded by giving a font name without specifying the encoding, (ii) the encoding of the loaded font is the
locale encoding, and then (iii) the strings in the fvwm configuration files should use the locale encoding as
well as the window and icon name. With Xft the situation is bit different as Xft supports only iso10646-1
and iso8859-1. If you do not specify one of these encodings in the Xft font name, then fvwm does strings
conversion using (iii). Note that with multibyte fonts (and in particular with "CJK" fonts) for good text
rendering, the locale encoding should be the charset of the font.

To override the previous rules, it is possible to specify the string encoding in the beginning of a font
description as follow:

StringEncoding=enc:_full_font_name_

where enc is an encoding supported by fvwm (usually font name charset plus some unicode encodings:
UTF-8, USC-2, USC-4 and UTF-16).

For example, you may use an iso8859-1 locale charset and have an FvwmForm in Russian using koi8-r
encoding. In this case, you just have to ask FvwmForm to load a koi8-r font by specifying the encoding in
the font name. With a multibyte language, (as multibyte font works well only if the locale encoding is the
charset of the font), you should use an iso10646-1 font:

StringEncoding=jisx0208.1983-0:-*-fixed-medium-r-*-ja-*-iso10646-1

or

"StringEncoding=jisx0208.1983-0:xft:Bitstream Cyberbit"

if your FvwmForm configuration uses jisx0208.1983-0 encoding. Another possibility is to use UTF-8
encoding for your FvwmForm configuration and use an iso10646-1 font:

-*-fixed-medium-r-*-ja-*-iso10646-1

or

"StringEncoding=UTF-8:xft:Bitstream Cyberbit"

or equivalently

"xft:Bitstream Cyberbit:encoding=iso10646-1"

In general iso10646-1 fonts together with UTF-8 string encoding allows the display of any characters in a
given menu, FvwmForm etc.

More and more, unicode is used and text files use UTF-8 encoding. However, in practice the characters
used range over your locale charset (this is the case when you generate a menu with fvwm-menu-desktop
with recent versions of KDE and GNOME). For saving memory (an iso10646-1 font may have a very
large number of characters) or because you have a pretty font without an iso10646-1 charset, you can
specify the string encoding to be UTF-8 and use a font in the locale charset:

05-Sep-2019 14

FVWM(1) Fvwm 2.6.9 FVWM(1)

StringEncoding=UTF-8:-*-pretty_font-*-12-*

In most cases, fvwm correctly determines the encoding of the font. However, some fonts do not end with
valid encoding names. When the font name isn’t normal, for example:

-misc-fixed-*--20-*-my_utf8-36

you need to add the encoding after the font name using a slash as a delimiter. For example:

MenuStyle * Font -misc-fixed-*--20-*-my_utf8-36/iso10646-1

If fvwm finds an encoding, fvwm uses the iconv system functions to do conversion between encodings.
Unfortunately, there are no standards. For conversion between iso8859-1 and UTF-8: a GNU system uses
"ISO-8859-1" and other systems use "iso881" to define the converters (these two names are supported by
fvwm). Moreover, in some cases it may be necessary to use machine specific converters. So, if you
experience problems you can try to get information on your iconv implementation ("man iconv" may help)
and put the name which defines the converter between the font encoding and UTF-8 at the end of the font
name after the encoding hint and a / (another possible solution is to use GNU libiconv). For example use:

Style * Font -misc-fixed-*--14-*-iso8859-1/*/latin1

to use latin1 for defining the converter for the iso8859-1 encoding. The "*" in between the "/" says to
fvwm to determine the encoding from the end of the font name. Use:

Style * Font \
-misc-fixed-*--14-*-local8859-6/iso8859-6/local_iso8859_6_iconv

to force fvwm to use the font with iso8859-6 as the encoding (this is useful for bi-directionality) and to
use local_iso8859_6_iconv for defining the converters.

Font Shadow Effects
Fonts can be given 3d effects. At the beginning of the font name (or just after a possible StringEncoding
specification) add

Shadow=size [offset] [directions]]:

size is a positive integer which specifies the number of pixels of shadow. offset is an optional positive
integer which defines the number of pixels to offset the shadow from the edge of the character. The default
offset is zero. directions is an optional set of directions the shadow emanates from the character. The
directions are a space separated list of fvwm directions:

N, North, Top, t, Up, u, -

E, East, Right, r, Right, r,]

S, South, Bottom, b, Down, d, _

W, West, Left, l, Left, l, [

NE, NorthEast, TopRight, tr, UpRight, ur, ˆ

SE, SouthEast, BottomRight, br, DownRight, dr, >

SW, SouthWest, BottomLeft, bl, DownLeft, dl, v

NW, NorthWest, TopLeft, tl, UpLeft, ul, <

C, Center, Centre, .

A shadow is displayed in each given direction. All is equivalent to all the directions. The default direction
is BottomRight. With the Center direction, the shadow surrounds the whole string. Since this is a super set
of all other directions, it is a waste of time to specify this along with any other directions.

The shadow effect only works with colorsets. The color of the shadow is defined by using the fgsh option
of the Colorset command. Please refer to the Colorsets section for details about colorsets.

05-Sep-2019 15

FVWM(1) Fvwm 2.6.9 FVWM(1)

Note: It can be difficult to find the font, fg, fgsh and bg colors to make this effect look good, but it can look
quite good.

BI-DIRECTIONAL TEXT
Arabic and Hebrew text require bi-directional text support to be displayed correctly, this means that logical
strings should be converted before their visual presentation, so left-to-right and right-to-left sub-strings
are determined and reshuffled. In fvwm this is done automatically in window titles, menus, module labels
and other places if the fonts used for displaying the text are of one of the charsets that require bidi
(bi-directional) support. For example, this includes iso8859-6, iso8859-8 and iso10646-1 (unicode), but
not other iso8859-* fonts.

This bi-directional text support is done using the fribidi library compile time option, see INSTALL.fvwm.

KEYBOARD SHORTCUTS
Almost all window manager operations can be performed from the keyboard so mouse-less operation
should be possible. In addition to scrolling around the virtual desktop by binding the Scroll command to
appropriate keys, Popup, Move, Resize, and any other command can be bound to keys. Once a command
is started the pointer is moved by using the up, down, left, and right arrows, and the action is terminated by
pressing return. Holding down the Shift key causes the pointer movement to go in larger steps and holding
down the control key causes the pointer movement to go in smaller steps. Standard emacs and vi cursor
movement controls (n , p , f , b , and j , k , h , l) can be used instead of the arrow keys.

SESSION MANAGEMENT
Fvwm supports session management according to the X Session Management Protocol. It saves and
restores window position, size, stacking order, desk, stickiness, shadiness, maximizedness, iconifiedness for
all windows. Furthermore, some global state is saved.

Fvwm doesn’t save any information regarding styles, decors, functions or menus. If you change any of
these resources during a session (e.g. by issuing Style commands or by using various modules), these
changes are lost after saving and restarting the session. To become permanent, such changes have to be
added to the configuration file.

Note further that the current implementation has the following anomaly when used on a multi-screen
display: Starting fvwm for the first time, fvwm manages all screens by forking a copy of itself for each
screen. Every copy knows its parent and issuing a Quit command to any instance of fvwm kills the master
and thus all copies of fvwm. When you save and restart the session, the session manager brings up a copy
of fvwm on each screen, but this time they are started as individual instances managing one screen only.
Thus a Quit kills only the copy it was sent to. This is probably not a very serious problem, since with
session management, you are supposed to quit a session through the session manager anyway. If it is really
needed,

Exec exec killall fvwm

still kills all copies of fvwm. Your system must have the killall command though.

BOOLEAN ARGUMENTS
A number of commands take one or several boolean arguments. These take a few equivalent inputs: "yes",
"on", "true", "t" and "y" all evaluate to true while "no", "off", "false", "f" and "n" evaluate to false. Some
commands allow "toggle" too which means that the feature is disabled if it is currently enabled and vice
versa.

BUILTIN KEY AND MOUSE BINDINGS
The following commands are built-in to fvwm:

Key Help R A Popup MenuFvwmRoot
Key F1 R A Popup MenuFvwmRoot
Key Tab A M WindowList Root c c NoDeskSort
Key Escape A MC EscapeFunc
Mouse 1 R A Menu MenuFvwmRoot
Mouse 1 T A FuncFvwmRaiseLowerX Move

05-Sep-2019 16

FVWM(1) Fvwm 2.6.9 FVWM(1)

Mouse 1 FS A FuncFvwmRaiseLowerX Resize
Mouse 2 FST A FuncFvwmRaiseLowerX Move
AddToFunc FuncFvwmRaiseLowerX
+ I Raise
+ M $0
+ D Lower

The Help and F1 keys invoke a built-in menu that fvwm creates. This is primarily for new users that have
not created their own configuration file. Either key on the root (background) window pops up an menu to
help you get started.

The Tab key pressed anywhere with the Meta key (same as the Alt key on PC keyboards) held down pop-ups
a window list.

Mouse button 1 on the title-bar or side frame can move, raise or lower a window.

Mouse button 1 on the window corners can resize, raise or lower a window.

You can override or remove these bindings. To remove the window list binding, use this:

Key Tab A M -

COMMAND EXECUTION
Module and Function Commands

If fvwm encounters a command that it doesn’t recognize, it checks to see if the specified command should
have been

Function (rest of command)

or

Module (rest of command)

This allows complex functions or modules to be invoked in a manner which is fairly transparent to the
configuration file.

Example: the config file contains the line

HelpMe

Fvwm looks for an fvwm command called "HelpMe", and fails. Next it looks for a user-defined complex
function called "HelpMe". If no such function exists, fvwm tries to execute a module called "HelpMe".

Delayed Execution of Commands
Note: There are many commands that affect look and feel of specific, some or all windows, like Style,
Mouse, Colorset, TitleStyle and many others. For performance reasons such changes are not applied
immediately but only when fvwm is idle, i.e. no user interaction or module input is pending. Specifically,
new Style options that are set in a function are not applied until after the function has completed. This can
sometimes lead to unwanted effects.

To force that all pending changes are applied immediately, use the UpdateStyles, Refresh or
RefreshWindow commands.

QUOTING
Quotes are required only when needed to make fvwm consider two or more words to be a single argument.
Unnecessary quoting is allowed. If you want a quote character in your text, you must escape it by using the
backslash character. For example, if you have a pop-up menu called "Window-Ops", then you do not need
quotes:

Popup Window-Ops

but if you replace the dash with a space, then you need quotes:

05-Sep-2019 17

FVWM(1) Fvwm 2.6.9 FVWM(1)

Popup "Window Ops"

The supported quoting characters are double quotes, single quotes and reverse single quotes. All three
kinds of quotes are treated in the same way. Single characters can be quoted with a preceding backslash.
Quoting single characters works even inside other kinds of quotes.

COMMAND EXPANSION
Whenever an fvwm command line is executed, fvwm performs parameter expansion. A parameter is a ’$’
followed by a word enclosed in brackets ($[...]) or a single special character. If fvwm encounters an
unquoted parameter on the command line it expands it to a string indicated by the parameter name.
Unknown parameters are left untouched. Parameter expansion is performed before quoting. To get a literal
’$’ use "$$".

If a command is prefixed with a ’-’ parameter expansion isn’t performed. This applies to the command
immediately following the ’-’, in which the expansion normally would have taken place. When uesed
together with other prefix commands it must be added before the other prefix.

Example:

Pick -Exec exec xmessage ’$[w.name]’

opens an xmessage dialog with "$[w.name]" unexpanded.

The longer variables may contain additional variables inside the name, which are expanded before the outer
variable.

In earlier versions of fvwm, some single letter variables were supported. It is deprecated now, since they
cause a number of problems. You should use the longer substitutes instead.

Example:

Print the current desk number, horizontal page number
and the window’s class (unexpanded here, no window).
Echo $[desk.n] $[page.nx] $[w.class]

Note: If the command is called outside a window context, it prints "$[w.class]" instead of the class name. It
is usually not enough to have the pointer over a window to have a context window. To force using the
window with the focus, the Current command can be used:

Current Echo $[desk.n] $[page.nx] $[w.class]

The parameters known by fvwm are:

$$
A literal ’$’.

$.
The absolute directory of the currently Read file. Intended for creating relative and relocatable
configuration trees. If used outside of any read file, the returned value is ’.’.

$0 to $9
The positional parameters given to a complex function (a function that has been defined with the
AddToFunc command). "$0" is replaced with the first parameter, "$1" with the second parameter and
so on. If the corresponding parameter is undefined, the "$..." is deleted from the command line.

$*
All positional parameters given to a complex function. This includes parameters that follow after
"$9".

$[n]
The n:th positional parameter given to a complex function, counting from 0. If the corresponding
parameter is undefined, the "$[n]" is deleted from the command line. The parameter is expanded
unquoted.

05-Sep-2019 18

FVWM(1) Fvwm 2.6.9 FVWM(1)

$[n-m]
The positional parameters given to a complex function, starting with parameter n and ending with
parameter m. If all the corresponding parameters are undefined, the "$[...]" is deleted from the
command line. If only some of the parameters are defined, all defined parameters are expanded, and
the remaining silently ignored. All parameters are expanded unquoted.

$[n-]
All the positional parameters given to a complex function, starting with parameter n. If all the
corresponding parameters are undefined, the "$[...]" is deleted from the command line. All parameters
are expanded unquoted.

$[*]
All the positional parameters given to a complex function. This is equivalent of $[0-].

$[version.num]
The version number, like "2.6.0".

$[version.info]
The version info, like " (from cvs)", empty for the official releases.

$[version.line]
The first line printed by the --version command line option.

$[vp.x] $[vp.y] $[vp.width] $[vp.height]
Either coordinate or the width or height of the current viewport.

$[wa.x] $[wa.y] $[wa.width] $[wa.height]
Either coordinate or the width or height of the EWMH working area.

$[dwa.x] $[dwa.y] $[dwa.width] $[dwa.height]
Either coordinate or the width or height of the dynamic EWMH working area.

$[desk.n]
The current desk number.

$[desk.name<n>]
These parameters are replaced with the name of the desktop number <n> that is defined with the
DesktopName command. If no name is defined, then the default name is returned.

$[desk.width] $[desk.height]
The width or height of the whole desktop, i.e. the width or height multiplied by the number of pages in
x or y direction.

$[desk.pagesx] $[desk.pagesy]
The number of total pages in a desk in x or y direction. This is the same as the values set by
DesktopSize.

$[page.nx] $[page.ny]
The current page numbers, by X and Y axes, starting from 0. page is equivalent to area in the
GNOME terminology.

$[w.id]
The window-id (expressed in hex, e.g. 0x10023c) of the window the command was called for or
"$[w.id]" if no window is associated with the command.

$[w.name] $[w.iconname] $[w.class] $[w.resource] $[w.visiblename] $[w.iconfile] $[w.miniiconfile]
$[w.iconfile.svgopts] $[w.miniiconfile.svgopts]

The window’s name, icon name, resource class and resource name, visible name, file name of its icon
or mini icon defined with the Icon or MiniIcon style (including the full path if the file was found on
disk), and (if fvwm is compiled with SVG support) the icon or mini icon svg rendering options
(including the leading colon), or unexpanded "$[w.<attribute>]" string if no window is associated with
the command.

05-Sep-2019 19

FVWM(1) Fvwm 2.6.9 FVWM(1)

Note, the first 5 variables may include any kind of characters, so these variables are quoted. It means
that the value is surrounded by single quote characters and any contained single quote is prefixed with
a backslash. This guarantees that commands like:

Style $[w.resource] Icon norm/network.png

work correctly, regardless of any special symbols the value may contain, like spaces and different
kinds of quotes.

In the case of the window’s visible name, this is the value returned from the literal title of the window
shown in the titlebar. Typically this will be the same as $[w.name] once expanded, although in the
case of using IndexedWindowName then this is more useful a distinction, and allows for referencing
the specific window by its visible name for inclusion in things like Style commands.

$[w.x] $[w.y] $[w.width] $[w.height]
Either coordinate or the width or height of the current window if it is not iconified. If no window is
associated with the command or the window is iconified, the string is left as is.

$[w.desk]
The number of the desk on which the window is shown. If the window is sticky the current desk
number is used.

$[w.layer]
The layer of the window.

$[w.screen]
The screen number the window is on. If Xinerama is not present, this returns the number 0.

$[cw.x] $[cw.y] $[cw.width] $[cw.height]
These work like $[w....] but return the geometry of the client part of the window. In other words: the
border and title of the window is not taken into account.

$[i.x], $[it.x], $[ip.x] $[i.y], $[it.y], $[ip.y] $[i.width], $[it.width], $[ip.width] $[i.height], $[it.height],
$[ip.height]

These work like $[w....] but return the geometry of the icon ($[i....]), the icon title ($[it....]) or the icon
picture ($[ip....]).

$[pointer.x] $[pointer.y]
These return the position of the pointer on the screen. If the pointer is not on the screen, these
variables are not expanded.

$[pointer.wx] $[pointer.wy]
These return the position of the pointer in the selected window. If the pointer is not on the screen, the
window is iconified or no window is selected, these variables are not expanded.

$[pointer.cx] $[pointer.cy]
These return the position of the pointer in the client portion of the selected window. If the pointer is
not on the screen, the window is shaded or iconified or no window is selected, these variables are not
expanded.

$[pointer.screen]
The screen number the pointer is currently on. Returns 0 if Xinerama is not enabled.

$[screen]
The screen number fvwm is running on. Useful for setups with multiple screens.

$[fg.cs<n>] $[bg.cs<n>] $[hilight.cs<n>] $[shadow.cs<n>]
These parameters are replaced with the name of the foreground (fg), background (bg), hilight (hilight)
or shadow (shadow) color that is defined in colorset <n> (replace <n> with zero or a positive integer).
For example "$[fg.cs3]" is expanded to the name of the foreground color of colorset 3 (in
rgb:rrrr/gggg/bbbb form). Please refer to the Colorsets section for details about colorsets.

05-Sep-2019 20

FVWM(1) Fvwm 2.6.9 FVWM(1)

$[schedule.last]
This is replaced by the id of the last command that was scheduled with the Schedule command, even
if this command was already executed.

$[schedule.next]
This is replaced by the id the next command used with Schedule will get (unless a different id is
specified explicitly).

$[cond.rc]
The return code of the last conditional command. This variable is only valid inside a function and can
not be used in a conditional command. Please refer to the section Conditional Commands in the
command list.

$[func.context]
The context character of the running command as used in the Mouse, Key or PointerKey command.
This is useful for example with:

Mouse 3 FS N WindowShade $$[func.context]

$[gt.str]
return the translation of str by looking in the current locale catalogs. If no translation is found str is
returned as is. See the LocalePath command.

$[infostore.key]
Return the value of the item stored in the InfoStore at the given key. If no key is present, the
unexpanded string is returned.

$[...]
If the string within the braces is neither of the above, fvwm tries to find an environment variable with
this name and replaces its value if one is found (e.g. "$[PAGER]" could be replaced by "more").
Otherwise the string is left as is.

Some examples can be found in the description of the AddToFunc command.

SCRIPTING & COMPLEX FUNCTIONS
To achieve the more complex effects, fvwm has a number of commands that improve its scripting abilities.
Scripts can be read from a file with Read, from the output of a command with PipeRead or written as a
complex function with the AddToFunc command. For the curious, section 7 of the fvwm FAQ shows
some real life applications of scripting. Please refer to the sections User Functions and Shell Commands
and Conditional Commands for details. A word of warning: during execution of complex functions,
fvwm needs to take all input from the mouse pointer (the pointer is "grabbed" in the slang of X). No other
programs can receive any input from the pointer while a function is run. This can confuse some programs.
For example, the xwd program refuses to make screen shots when run from a complex function. To achieve
the same functionality you can use the Read or PipeRead command instead.

LIST OF FVWM COMMANDS
The command descriptions below are grouped together in the following sections. The sections are
hopefully sorted in order of usefulness to the newcomer.

• Menu commands

• Miscellaneous commands

• Commands affecting window movement and placement

• Commands for focus and mouse movement

05-Sep-2019 21

FVWM(1) Fvwm 2.6.9 FVWM(1)

• Commands controlling window state

• Commands for mouse, key and stroke bindings

• The Style command (controlling window styles)

• Other commands controlling window styles

• Commands controlling the virtual desktop

• Commands for user functions and shell commands

• Conditional commands

• Module commands

• Quit, restart and session management commands

• Colorsets

• Color gradients

Menus
Before a menu can be opened, it has to be populated with menu items using the AddToMenu command
and bound to a key or mouse button with the Key, PointerKey or Mouse command (there are many other
ways to invoke a menu too). This is usually done in the configuration file.

Fvwm menus are extremely configurable in look and feel. Even the slightest nuances can be changed to the
user’s liking, including the menu item fonts, the background, delays before popping up sub menus,
generating menus dynamically and many other features. Please refer to the MenuStyle command to learn
more.

Types of Menus
In fvwm there are four slightly different types of menus:

Popup menus can appear everywhere on the screen on their own or attached to a part of a window.
The Popup command opens popup menus. If the popup menu was invoked with a mouse button
held down, it is closed when the button is released. The item under the pointer is then activated
and the associated action is executed.

Menu is a very similar command, but the menus it opens are slightly less transient. When invoked
by clicking a mouse button, it stays open and can be navigated with no button held. But if it is
invoked by a button press followed by mouse motion, it behaves exactly like a popup menu.

Tear off menus or Pin up menus are menus from either of the above two commands that have been
"torn off" their original context and pinned on the desktop like a normal window. They are created
from other menus by certain key presses or mouse sequences or with the TearMenuOff command

05-Sep-2019 22

FVWM(1) Fvwm 2.6.9 FVWM(1)

from inside a menu.

Sub menus are menus inside menus. When a menu item that has the Popup command as its action
is selected, the named menu is opened as an inferior menu to the parent. Any type of menu can
have sub menus.

Menu Anatomy
Menus consist of any number of titles which are inactive menu items that usually appear at the top
of the menu, normal items triggering various actions when selected, separator lines between the
items, tear off bars (a horizontal broken line) that tear off the menu when selected, and sub menu
items indicated with a triangle pointing left or right, depending on the direction in which the sub
menu appears. All the above menu items are optional.

Additionally, if the menu is too long to fit on the screen, the excess menu items are put in a
continuation menu and a sub menu with the string "More..." is placed at the bottom of the menu.
The "More..." string honors the locale settings.

Finally, there may be a picture running up either side of the menu (a "side bar").

Menu Navigation
Menus can be navigated either with the keyboard or with the mouse. Many people prefer to use
the mouse, but it can be rather tedious. Once you get the hang of it, keyboard navigation can be
much faster. While fvwm displays a menu, it can do nothing else. For example, new windows do
not appear before the menu is closed. However, this is not exactly true for tear off menus. See the
Tear Off Menus section for details.

Mouse Navigation
Moving the pointer over a menu selects the item below it. Normally this is indicated by a 3d
border around the item, but not all parts of a menu can be selected. Pressing any mouse button
while a menu is open by default activates the item below it. Items of a popup menu are also
activated by releasing a held mouse button. In case of an item that hides a sub menu, the sub menu
is displayed if the pointer hovers over the item long enough or moves close to the triangle
indicating the sub menu. This behaviour can be tuned with menu styles.

Scrolling a mouse wheel over a menu either wraps the pointer along the menu (default), scrolls the
menu under the pointer or act as if the menu was clicked depending on the MouseWheel menu
style.

Clicking on a selected item activates it - what happens exactly depends on the type of the item.

Clicking on a title, a separator, the side bar, or outside the menu closes the menu (exception: tear
off menus can not be closed this way). Pressing mouse button 2 over a menu title or activating a
tear off bar creates a tear off menu from the current menu. Clicking on a normal menu item
invokes the command that is bound to it, and clicking on a sub menu item either closes all open
menus and replaces them with the sub menu or posts the menu (default).

Posting menus is meant to ease mouse navigation. Once a sub menu is posted, only items from
that sub menu can be selected. This can be very useful to navigate the menu if the pointer tends to
stray off the menu. To unpost the menu and revert back to normal operation, either click on the
same sub menu item or press any key.

Keyboard Navigation
Just like with mouse navigation, the item below the pointer is selected. This is achieved by
warping the pointer to the menu items when necessary. While a menu is open, all key presses are
intercepted by the menu. No other application can get keyboard input (although this is not the
case for tear off menus).

Items can be selected directly by pressing a hotkey that can be configured individually for each
menu item. The hotkey is indicated by underlining it in the menu item label. With the
AutomaticHotkeys menu style fvwm automatically assigns hotkeys to all menu items.

The most basic keys to navigate through menus are the cursor keys (move up or down one item,

05-Sep-2019 23

FVWM(1) Fvwm 2.6.9 FVWM(1)

enter or leave a sub menu), Space (activate item) and Escape (close menu). Numerous other keys
can be used to navigate through menus by default:

Enter, Return, Space activate the current item.

Escape, Delete, Ctrl-G exit the current sequence of menus or destroy a tear off menu.

J, N, Cursor-Down, Tab, Meta-Tab, Ctrl-F, move to the next item.

K, P, Cursor-Up, Shift-Tab, Shift-Meta-Tab, Ctrl-B, move to the prior item.

L, Cursor-Right, F enter a sub menu.

H, Cursor-Left, B return to the prior menu.

Ctrl-Cursor-Up, Ctrl-K Ctrl-P, Shift-Ctrl-Meta-Tab, Page-Up move up five items.

Ctrl-Cursor-Down, Ctrl-J Ctrl-N, Ctrl-Meta-Tab Page-Down move down five items.

Shift-P, Home, Shift-Cursor-Up, Ctrl-A move to the first item.

Shift-N, End, Shift-Cursor-Down, Ctrl-E move to the last item.

Meta-P, Meta-Cursor-Up, Ctrl-Cursor-Left, Shift-Ctrl-Tab, move up just below the next
separator.

Meta-N, Meta-Cursor-Down, Ctrl-Cursor-Right, Ctrl-Tab, move down just below the next
separator.

Insert opens the "More..." sub menu if any.

Backspace tears off the menu.

Menu Bindings
The keys and mouse buttons used to navigate the menu can be configured using the Key and
Mouse commands with the special context ’M’, possible combined with ’T’ for the menu title, ’I’
for other menu items, ’S’ for any border or sidepic, ’[’ for left border including a left sidepic, ’]’
for right border including a right sidepic, ’-’ for top border, ’_’ for bottom border. The menu
context uses its own set of actions that can be bound to keys and mouse buttons. These are
MenuClose, MenuCloseAndExec, MenuEnterContinuation, MenuEnterSubmenu,
MenuLeaveSubmenu, MenuMoveCursor, MenuCursorLeft, MenuCursorRight, MenuSelectItem,
MenuScroll and MenuTearOff.

It is not possible to override the key Escape with no modifiers for closing the menu. Neither is it
possible to undefine mouse button 1, the arrow keys or the enter key for minimal navigation.

MenuClose exits from the current sequence of menus or destroys a tear off menu.

MenuCloseAndExec exits from the current sequence of menus or destroys a tear off menu and
executes the rest of the line as a command.

MenuEnterContinuation opens the "More..." sub menu if any.

MenuEnterSubmenu enters a sub menu.

MenuLeaveSubmenu returns to the prior menu.

MenuMoveCursor n [m] moves the selection to another item. If the first argument is zero the
second argument specifies an absolute item in the menu to move the pointer to. Negative items are
counted from the end of the menu. If the first argument is non-zero, the second argument must be
omitted, and the first argument specifies a relative change in the selected item. The positions may
be suffixed with a ’s’ to indicate that the items should refer only to the first items after separators.

MenuCursorLeft enters a sub menu with the SubmenusLeft menu style, and returns to the prior
menu with the SubmenusRight menu style.

MenuCursorRight enters a sub menu with the SubmenusRight menu style, and returns to the
prior menu with the SubmenusLeft menu style.

05-Sep-2019 24

FVWM(1) Fvwm 2.6.9 FVWM(1)

MenuSelectItem triggers the action for the menu item.

MenuScroll n performs menu scrolling according to the MouseWheel menu style with n items.
The distance can be suffixed with an ’s’ to indicate the items should refer only to the first items
after separators.

MenuTearOff turns a normal menu into a "torn off" menu. See Tear Off Menus for details.

Tear Off Menus
A tear off menu is any menu that has been "torn off" the window it was attached to and pinned to
the root window. There are three ways to tear off a menu: click on the menu title with mouse
button 2, press Backspace in the menu or activate its tear off bar (a horizontal bar with a broken
line). Tear off bars must be added to the menu as any other item by assigning them the command
TearMenuOff.

The builtin tear off actions can be overridden by undefining the builtin menu actions bound to tear
off. To remove the builtin mouse button 2 binding, use:

Mouse 2 MT A -

and to remove the builtin backspace binding, use:

Key Backspace M A -

See the section Menu Bindings for details on how to assign other bindings for tear off.

Note that prior to fvwm 2.5.20 the tear off mouse bindings were redefined in different way, which
no longer work.

The window containing the menu is placed as any other window would be. If you find it
confusing to have your tear off menus appear at random positions on the screen, put this line in
your configuration file:

Style fvwm_menu UsePPosition

To remove borders and buttons from a tear-off menu but keep the menu title, you can use

Style fvwm_menu !Button 0, !Button 1
Style fvwm_menu !Button 2, !Button 3
Style fvwm_menu !Button 4, !Button 5
Style fvwm_menu !Button 6, !Button 7
Style fvwm_menu !Button 8, !Button 9
Style fvwm_menu Title, HandleWidth 0

A tear off menu is a cross breeding between a window and a menu. The menu is swallowed by a
window and its title is stripped off and displayed in the window title. The main advantage is that
the menu becomes permanent - activating an item does not close the menu. Therefore, it can be
used multiple times without reopening it. To destroy such a menu, close its window or press the
Escape key.

Tear off menus behave somewhat differently than normal menus and windows. They do not take
the keyboard focus, but while the pointer is over one of them, all key presses are sent to the menu.
Other fvwm key bindings are disabled as long as the pointer is inside the tear off menu or one of
its sub menus. When the pointer leaves this area, all sub menus are closed immediately. Note that
the window containing a tear off menu is never hilighted as if it had the focus.

A tear off menu is an independent copy of the menu it originated from. As such, it is not affected
by adding items to that menu or changing its menu style.

To create a tear off menu without opening the normal menu first, the option TearOffImmediately
can be added to the Menu or Popup command.

05-Sep-2019 25

FVWM(1) Fvwm 2.6.9 FVWM(1)

AddToMenu menu-name [menu-label action]
Begins or adds to a menu definition. Typically a menu definition looks like this:

AddToMenu Utilities Utilities Title
+ Xterm Exec exec xterm -e tcsh
+ Rxvt Exec exec rxvt
+ "Remote Logins" Popup Remote-Logins
+ Top Exec exec rxvt -T Top -n Top -e top
+ Calculator Exec exec xcalc
+ Xman Exec exec xman
+ Xmag Exec exec xmag
+ emacs Exec exec xemacs
+ Mail MailFunction xmh "-font fixed"
+ "" Nop
+ Modules Popup Module-Popup
+ "" Nop
+ Exit Fvwm Popup Quit-Verify

The menu could be invoked via

Mouse 1 R A Menu Utilities Nop

or

Mouse 1 R A Popup Utilities

There is no end-of-menu symbol. Menus do not have to be defined in a contiguous region of the
config file. The quoted (or first word) portion in the above examples is the menu label, which
appears in the menu when the user pops it up. The remaining portion is an fvwm command which
is executed if the user selects that menu item. An empty menu-label ("") and the Nop function are
used to insert a separator into the menu.

The keywords DynamicPopUpAction and DynamicPopDownAction have a special meaning when
used as the name of a menu item. The action following the keyword is executed whenever the
menu is popped up or down. This way you can implement dynamic menus. It is even possible to
destroy itself with DestroyMenu and the rebuild from scratch. When the menu has been
destroyed (unless you used the recreate option when destroying the menu), do not forget to add the
dynamic action again.

Note: Do not trigger actions that require user interaction. They may fail and may screw up your
menus. See the Silent command.

Warning
Do not issue MenuStyle commands as dynamic menu actions. Chances are good that this crashes
fvwm.

There are several configurable scripts installed together with fvwm for automatic menu generation.
They have their own man pages. Some of them, specifically fvwm-menu-directory and
fvwm-menu-desktop, may be used with DynamicPopupAction to create a directory listing or
GNOME/KDE application listing.

Example (File browser):

You can find the shell script fvwm_make_browse_menu.sh
in the utils/ directory of the distribution.
AddToMenu BrowseMenu
+ DynamicPopupAction PipeRead \
’fvwm_make_browse_menu.sh BrowseMenu’

05-Sep-2019 26

FVWM(1) Fvwm 2.6.9 FVWM(1)

Example (Picture menu):

Build a menu of all .jpg files in
$HOME/Pictures
AddToMenu JpgMenu foo title
+ DynamicPopupAction Function MakeJpgMenu

AddToFunc MakeJpgMenu
+ I DestroyMenu recreate JpgMenu
+ I AddToMenu JpgMenu Pictures Title
+ I PipeRead ’for i in $HOME/Pictures/*.jpg; \
do echo AddToMenu JpgMenu "‘basename $i‘" Exec xv $i; done’

The keyword MissingSubmenuFunction has a similar meaning. It is executed whenever you try to
pop up a sub menu that does not exist. With this function you can define and destroy menus on the
fly. You can use any command after the keyword, but if the name of an item (that is a submenu)
defined with AddToFunc follows it, fvwm executes this command:

Function <function-name> <submenu-name>

i.e. the name is passed to the function as its first argument and can be referred to with "$0".

The fvwm-menu-directory script mentioned above may be used with MissingSubmenuFunction
to create an up to date recursive directory listing.

Example:

There is another shell script fvwm_make_directory_menu.sh
in the utils/ directory of the distribution. To use it,
define this function in your configuration file:

DestroyFunc MakeMissingDirectoryMenu
AddToFunc MakeMissingDirectoryMenu
+ I PipeRead fvwm_make_directory_menu.sh $0

DestroyMenu SomeMenu
AddToMenu SomeMenu
+ MissingSubmenuFunction MakeMissingDirectoryMenu
+ "Root directory" Popup /

This is another implementation of the file browser that uses sub menus for subdirectories.

Titles can be used within the menu. If you add the option top behind the keyword Title, the title is
added to the top of the menu. If there was a title already, it is overwritten.

AddToMenu Utilities Tools Title top

All text up to the first Tab in the menu label is aligned to the left side of the menu, all text right of
the first Tab is aligned to the left in a second column and all text thereafter is placed right aligned
in the third column. All other Tab s are replaced by spaces. Note that you can change this format
with the ItemFormat option of the MenuStyle command.

If the menu-label contains an ampersand (’&’), the next character is taken as a hot-key for the
menu item. Hot-keys are underlined in the label. To get a literal ’&’, insert "&&". Pressing the
hot-key moves through the list of menu items with this hot-key or selects an item that is the only
one with this hot-key.

If the menu-label contains a sub-string which is set off by stars, then the text between the stars is
expected to be the name of an image file to insert in the menu. To get a literal ’*’, insert "**". For
example

05-Sep-2019 27

FVWM(1) Fvwm 2.6.9 FVWM(1)

+ Calculator*xcalc.xpm* Exec exec xcalc

inserts a menu item labeled "Calculator" with a picture of a calculator above it. The following:

+ *xcalc.xpm* Exec exec xcalc

Omits the "Calculator" label, but leaves the picture.

If the menu-label contains a sub-string which is set off by percent signs, then the text between the
percent signs is expected to be the name of image file (a so called mini icon to insert to the left of
the menu label. A second mini icon that is drawn at the right side of the menu can be given in the
same way. To get a literal ’%’, insert "%%". For example

+ Calculator%xcalc.xpm% Exec exec xcalc

inserts a menu item labeled "Calculator" with a picture of a calculator to the left. The following:

+ %xcalc.xpm% Exec exec xcalc

Omits the "Calculator" label, but leaves the picture. The pictures used with this feature should be
small (perhaps 16x16).

If the menu-name (not the label) contains a sub-string which is set off by at signs (’@’), then the
text between them is expected to be the name of an image file to draw along the left side of the
menu (a side pixmap). You may want to use the SidePic option of the MenuStyle command
instead. To get a literal ’@’, insert "@@". For example

AddToMenu StartMenu@linux-menu.xpm@

creates a menu with a picture in its bottom left corner.

If the menu-name also contains a sub-string surrounded by ’ˆ’s, then the text between ’ˆ’s is
expected to be the name of an X11 color and the column containing the side picture is colored
with that color. You can set this color for a menu style using the SideColor option of the
MenuStyle command. To get a literal ’ˆ’, insert "ˆˆ". Example:

AddToMenu StartMenu@linux-menu.xpm@ˆblueˆ

creates a menu with a picture in its bottom left corner and colors with blue the region of the menu
containing the picture.

In all the above cases, the name of the resulting menu is name specified, stripped of the substrings
between the various delimiters.

ChangeMenuStyle menustyle menu ...
Changes the menu style of menu to menustyle. You may specify more than one menu in each call
of ChangeMenuStyle.

CopyMenuStyle orig-menustyle dest-menustyle
Copy orig-menustyle to dest-menustyle, where orig-menustyle is an existing menu style. If the
menu style dest_menustyle does not exist, then it is created.

DestroyMenu [recreate] menu
Deletes a menu, so that subsequent references to it are no longer valid. You can use this to change
the contents of a menu during an fvwm session. The menu can be rebuilt using AddToMenu.
The optional parameter recreate tells fvwm not to throw away the menu completely but to throw
away all the menu items (including the title).

DestroyMenu Utilities

DestroyMenuStyle menustyle
Deletes the menu style named menustyle and changes all menus using this style to the default
style, you cannot destroy the default menu style.

05-Sep-2019 28

FVWM(1) Fvwm 2.6.9 FVWM(1)

DestroyMenuStyle pixmap1

Menu menu-name [position] [double-click-action]
Causes a previously defined menu to be popped up in a sticky manner. That is, if the user invokes
the menu with a click action instead of a drag action, the menu stays up. The command
double-click-action is invoked if the user double-clicks a button (or hits the key rapidly twice if
the menu is bound to a key) when bringing up the menu. If the double click action is not specified,
double clicking on the menu does nothing. However, if the menu begins with a menu item (i.e. not
with a title or a separator) and the double click action is not given, double clicking invokes the first
item of the menu (but only if the pointer really was over the item).

The pointer is warped to where it was when the menu was invoked if it was both invoked and
closed with a keystroke.

The position arguments allow placement of the menu somewhere on the screen, for example
centered on the visible screen or above a title bar. Basically it works like this: you specify a
context-rectangle and an offset to this rectangle by which the upper left corner of the menu is
moved from the upper left corner of the rectangle. The position arguments consist of several parts:

[context-rectangle] x y [special-options]

The context-rectangle can be one of:

Root
the root window of the current screen.

XineramaRoot
the root window of the whole Xinerama screen. Equivalent to "root" when Xinerama is not
used.

Mouse
a 1x1 rectangle at the mouse position.

Window
the frame of the context window.

Interior
the inside of the context window.

Title
the title of the context window or icon.

Button<n>
button #n of the context window.

Icon
the icon of the context window.

Menu
the current menu.

Item
the current menu item.

Context
the current window, menu or icon.

This
whatever widget the pointer is on (e.g. a corner of a window or the root window).

Rectangle <geometry>
the rectangle defined by <geometry> in X geometry format. Width and height default to 1 if
omitted.

If the context-rectangle is omitted or illegal (e.g. "item" on a window), "Mouse" is the default.
Note that not all of these make sense under all circumstances (e.g. "Icon" if the pointer is on a

05-Sep-2019 29

FVWM(1) Fvwm 2.6.9 FVWM(1)

menu).

The offset values x and y specify how far the menu is moved from its default position. By default,
the numeric value given is interpreted as a percentage of the context rectangle’s width (height), but
with a trailing ’m’ the menu’s width (height) is used instead. Furthermore a trailing ’p’ changes
the interpretation to mean pixels.

Instead of a single value you can use a list of values. All additional numbers after the first one are
separated from their predecessor by their sign. Do not use any other separators.

If x or y are prefixed with "’o<number>" where <number> is an integer, the menu and the
rectangle are moved to overlap at the specified position before any other offsets are applied. The
menu and the rectangle are placed so that the pixel at <number> percent of the rectangle’s
width/height is right over the pixel at <number> percent of the menu’s width/height. So "o0"
means that the top/left borders of the menu and the rectangle overlap, with "o100" it’s the
bottom/right borders and if you use "o50" they are centered upon each other (try it and you will
see it is much simpler than this description). The default is "o0". The prefix "o<number>" is an
abbreviation for "+<number>-<number>m".

A prefix of ’c’ is equivalent to "o50". Examples:

window list in the middle of the screen
WindowList Root c c

menu to the left of a window
Menu name window -100m c+0

popup menu 8 pixels above the mouse pointer
Popup name mouse c -100m-8p

somewhere on the screen
Menu name rectangle 512x384+1+1 +0 +0

centered vertically around a menu item
AddToMenu foobar-menu
+ "first item" Nop
+ "special item" Popup "another menu" item +100 c
+ "last item" Nop

above the first menu item
AddToMenu foobar-menu
+ "first item" Popup "another menu" item +0 -100m

Note that you can put a sub menu far off the current menu so you could not reach it with the
mouse without leaving the menu. If the pointer leaves the current menu in the general direction of
the sub menu the menu stays up.

The special-options:

To create a tear off menu without opening the normal menu, add the option TearOffImmediately.
Normally the menu opens in normal state for a split second before being torn off. As tearing off
places the menu like any other window, a position should be specified explicitly:

Forbid fvwm to place the menu window
Style <name of menu> UsePPosition
Menu at top left corner of screen
Menu Root 0p 0p TearOffImmediately

The Animated and Mwm or Win menu styles may move a menu somewhere else on the screen. If

05-Sep-2019 30

FVWM(1) Fvwm 2.6.9 FVWM(1)

you do not want this you can add Fixed as an option. This might happen for example if you want
the menu always in the top right corner of the screen.

Where do you want a menu to appear when you click on its menu item? The default is to place the
title under the cursor, but if you want it where the position arguments say, use the SelectInPlace
option. If you want the pointer on the title of the menu, use SelectWarp too. Note that these
options apply only if the PopupAsRootMenu MenuStyle option is used.

The pointer is warped to the title of a sub menu whenever the pointer would be on an item when
the sub menu is popped up (fvwm menu style) or never warped to the title at all (Mwm or Win
menu styles). You can force (forbid) warping whenever the sub menu is opened with the
WarpTitle (NoWarp) option.

Note that the special-options do work with a normal menu that has no other position arguments.

MenuStyle stylename [options]
Sets a new menu style or changes a previously defined style. The stylename is the style name; if it
contains spaces or tabs it has to be quoted. The name "*" is reserved for the default menu style.
The default menu style is used for every menu-like object (e.g. the window created by the
WindowList command) that had not be assigned a style using the ChangeMenuStyle. See also
DestroyMenuStyle. When using monochrome color options are ignored.

options is a comma separated list containing some of the keywords Fvwm / Mwm / Win,
BorderWidth, Foreground, Background, Greyed, HilightBack / !HilightBack, HilightTitleBack,
ActiveFore / !ActiveFore, MenuColorset, ActiveColorset, GreyedColorset, TitleColorset,
Hilight3DThick / Hilight3DThin / Hilight3DOff, Hilight3DThickness, Animation / !Animation,
Font, TitleFont, MenuFace, PopupDelay, PopupOffset, TitleWarp / !TitleWarp, TitleUnderlines0 /
TitleUnderlines1 / TitleUnderlines2, SeparatorsLong / SeparatorsShort, TrianglesSolid /
TrianglesRelief, PopupImmediately / PopupDelayed, PopdownImmediately / PopdownDelayed,
PopupActiveArea, DoubleClickTime, SidePic, SideColor, PopupAsRootMenu / PopupAsSubmenu
/ PopupIgnore / PopupClose, RemoveSubmenus / HoldSubmenus, SubmenusRight /
SubmenusLeft, SelectOnRelease, ItemFormat, VerticalItemSpacing, VerticalMargins,
VerticalTitleSpacing, AutomaticHotkeys / !AutomaticHotkeys, UniqueHotkeyActivatesImmediate
/ !UniqueHotkeyActivatesImmediate, MouseWheel, ScrollOffPage / !ScrollOffPage,
TrianglesUseFore / !TrianglesUseFore.

In the above list some options are listed as option pairs or triples with a ’/’ in between. These
options exclude each other. All paired options can be negated to have the effect of the counterpart
option by prefixing ! to the option.

Some options are now negated by prefixing ! to the option. This is the preferred form for all such
options. The other negative forms are now deprecated and will be removed in the future.

This is a list of MenuStyle deprecated negative options: ActiveForeOff, AnimationOff,
AutomaticHotkeysOff, HilightBackOff, TitleWarpOff

Fvwm, Mwm, Win reset all options to the style with the same name in former versions of fvwm.
The default for new menu styles is Fvwm style. These options override all others except
Foreground, Background, Greyed, HilightBack, ActiveFore and PopupDelay, so they should be
used only as the first option specified for a menu style or to reset the style to defined behavior.
The same effect can be created by setting all the other options one by one.

Mwm and Win style menus popup sub menus automatically. Win menus indicate the current menu
item by changing the background to dark. Fvwm sub menus overlap the parent menu, Mwm and
Win style menus never overlap the parent menu.

Fvwm style is equivalent to !HilightBack, Hilight3DThin, !ActiveFore, !Animation, Font,
MenuFace, PopupOffset 0 67, TitleWarp, TitleUnderlines1, SeparatorsShort, TrianglesRelief,
PopupDelayed, PopdownDelayed, PopupDelay 150, PopdownDelay 150, PopupAsSubmenu,
HoldSubmenus, SubmenusRight, BorderWidth 2, !AutomaticHotkeys,
UniqueHotkeyActivatesImmediate, PopupActiveArea 75.

05-Sep-2019 31

FVWM(1) Fvwm 2.6.9 FVWM(1)

Mwm style is equivalent to !HilightBack, Hilight3DThick, !ActiveFore, !Animation, Font,
MenuFace, PopupOffset -3 100, !TitleWarp, TitleUnderlines2, SeparatorsLong, TrianglesRelief,
PopupImmediately, PopdownDelayed, PopdownDelay 150, PopupAsSubmenu, HoldSubmenus,
SubmenusRight, BorderWidth 2, UniqueHotkeyActivatesImmediate, !AutomaticHotkeys,
PopupActiveArea 75.

Win style is equivalent to HilightBack, Hilight3DOff, ActiveFore, !Animation, Font, MenuFace,
PopupOffset -5 100, !TitleWarp, TitleUnderlines1, SeparatorsShort, TrianglesSolid,
PopupImmediately, PopdownDelayed, PopdownDelay 150, PopupAsSubmenu,
RemoveSubmenus, SubmenusRight, BorderWidth 2, UniqueHotkeyActivatesImmediate,
!AutomaticHotkeys, PopupActiveArea 75.

BorderWidth takes the thickness of the border around the menus in pixels. It may be zero to 50
pixels. The default is 2. Using an illegal value reverts the border width to the default.

Foreground and Background may have a color name as an argument. This color is used for menu
text or the menu’s background. You can omit the color name to reset these colors to the built-in
default.

Greyed may have a color name as an argument. This color is the one used to draw a
menu-selection which is prohibited (or not recommended) by the Mwm hints which an
application has specified. If the color is omitted the color of greyed menu entries is based on the
background color of the menu.

HilightBack and !HilightBack switch hilighting the background of the selected menu item on and
off. A specific background color may be used by providing the color name as an argument to
HilightBack. If you use this option without an argument the color is based on the menu’s
background color. The ActiveColorset option overrides the specified color. If the colorset has a
non solid background it is used for the hilighting.

HilightTitleBack switches hilighting the background of menu titles on. If a TitleColorset was used,
the background colour is taken from there. Otherwise the color is based on the menu’s
background color. If the colorset has a non solid background it is used for the hilighting.

ActiveFore and !ActiveFore switch hilighting the foreground of the selected menu item on and off.
A specific foreground color may be used by providing the color name as an argument to
ActiveFore. Omitting the color turns hilighting on when an ActiveColorset is used. ActiveFore
turns off hilighting the foreground completely. The ActiveColorset option overrides the specified
color.

MenuColorset controls if a colorset is used instead of the Foreground, Background and MenuFace
menu styles. If the MenuColorset keyword is followed by a number equal to zero or greater, this
number is taken as the number of the colorset to use. If the number is omitted, the colorset is
switched off and the regular menu styles are used again. The foreground and background colors of
the menu items are replaced by the colors from the colorset. If the colorset has a pixmap defined,
this pixmap is used as the background of the menu. Note that the MenuFace menu style has been
optimized for memory consumption and may use less memory than the background from a
colorset. The shape mask from the colorset is used to shape the menu. Please refer to the
Colorsets section for details about colorsets.

ActiveColorset works exactly like MenuColorset, but the foreground from the colorset replaces the
color given with the ActiveFore menu style and the colorset’s background color replaces the color
given with the HilightBack command (to turn on background hilighting you have to use the
HilightBack menu style too). If specified, the hilight and shadow colors from the colorset are used
too. The pixmap and shape mask from the colorset are not used. Hilighting the background or
foreground can be turned off individually with the !ActiveFore or !HilightBack menu styles.

GreyedColorset works exactly like MenuColorset, but the foreground from the colorset replaces
the color given with the Greyed menu style. No other parts of the colorset are used.

TitleColorset works exactly like MenuColorset, but is used only for menu titles.

05-Sep-2019 32

FVWM(1) Fvwm 2.6.9 FVWM(1)

Hilight3DThick, Hilight3DThin and Hilight3DOff determine if the selected menu item is hilighted
with a 3D relief. Thick reliefs are two pixels wide, thin reliefs are one pixel wide.

Hilight3DThickness takes one numeric argument that may be between -50 and +50 pixels. With
negative values the menu item gets a pressed in look. The above three commands are equivalent to
a thickness of 2, 1 and 0.

Animation and !Animation turn menu animation on or off. When animation is on, sub menus that
do not fit on the screen cause the parent menu to be shifted to the left so the sub menu can be seen.

Font and TitleFont take a font name as an argument. If a font by this name exists it is used for the
text of all menu items. If it does not exist or if the name is left blank the built-in default is used.
If a TitleFont is given, it is used for all menu titles instead of the normal font.

MenuFace enforces a fancy background upon the menus. You can use the same options for
MenuFace as for the ButtonStyle. See description of ButtonStyle command and the Color
Gradients sections for more information. If you use MenuFace without arguments the style is
reverted back to normal.

Some examples of MenuFaces are:

MenuFace DGradient 128 2 lightgrey 50 blue 50 white
MenuFace TiledPixmap texture10.xpm
MenuFace HGradient 128 2 Red 40 Maroon 60 White
MenuFace Solid Maroon

Note: The gradient styles H, V, B and D are optimized for high speed and low memory
consumption in menus. This is not the case for all the other gradient styles. They may be slow
and consume huge amounts of memory, so if you encounter performance problems with them you
may be better off by not using them. To improve performance you can try one or all of the
following:

Turn hilighting of the active menu item other than foreground color off:

MenuStyle <style> Hilight3DOff, !HilightBack
MenuStyle <style> ActiveFore <preferred color>

Make sure sub menus do not overlap the parent menu. This can prevent menus being redrawn
every time a sub menu pops up or down.

MenuStyle <style> PopupOffset 1 100

Run your X server with backing storage. If your X Server is started with the -bs option, turn it
off. If not try the -wm and +bs options:

startx -- -wm +bs

You may have to adapt this example to your system (e.g. if you use xinit to start X).

PopupDelay requires one numeric argument. This value is the delay in milliseconds before a sub
menu is popped up when the pointer moves over a menu item that has a sub menu. If the value is
zero no automatic pop up is done. If the argument is omitted the built-in default is used. Note
that the popup delay has no effect if the PopupImmediately option is used since sub menus pop up
immediately then.

PopupImmediately makes menu items with sub menus pop up it up as soon as the pointer enters
the item. The PopupDelay option is ignored then. If PopupDelayed is used fvwm looks at the
PopupDelay option if or when this automatic popup happens.

PopdownDelay works exactly like PopupDelay but determines the timeout of the PopupDelayed
style.

PopdownImmediately makes sub menus vanish as soon as the pointer leaves the sub menu and the

05-Sep-2019 33

FVWM(1) Fvwm 2.6.9 FVWM(1)

correspondent item in the parent menu. With the opposite option PopdownDelayed the sub menu
only pops down after the time specified with the PopdownDelay option. This comes handy when
the pointer often strays off the menu item when trying to move into the sub menu. Whenever there
is a conflict between the PopupImmediately, PopupDelayed, PopupDelay styles and the
PopdownImmediately, PopdownDelayed, PopdownDelay styles, the Popup... styles win when
using mouse navigation and the Popdown... styles win when navigating with the keyboard.

PopupOffset requires two integer arguments. Both values affect where sub menus are placed
relative to the parent menu. If both values are zero, the left edge of the sub menu overlaps the left
edge of the parent menu. If the first value is non-zero the sub menu is shifted that many pixels to
the right (or left if negative). If the second value is non-zero the menu is moved by that many
percent of the parent menu’s width to the right or left.

PopupActiveArea requires an integer value between 51 and 100. Normally, when the pointer is
over a menu item with a sub menu and the pointer enters the area that starts at 75% of the menu
width, the sub menu is shown immediately. This percentage can be changed with
PopupActiveArea. Setting this value to 100 disables this kind of automatic popups altogether. The
default value is restored if no or an illegal value is given.

TitleWarp and !TitleWarp affect if the pointer warps to the menu title when a sub menu is opened
or not. Note that regardless of this setting the pointer is not warped if the menu does not pop up
under the pointer.

TitleUnderlines0, TitleUnderlines1 and TitleUnderlines2 specify how many lines are drawn below
a menu title.

SeparatorsLong and SeparatorsShort set the length of menu separators. Long separators run from
the left edge all the way to the right edge. Short separators leave a few pixels to the edges of the
menu.

TrianglesSolid and TrianglesRelief affect how the small triangles for sub menus is drawn. Solid
triangles are filled with a color while relief triangles are hollow.

DoubleClickTime requires one numeric argument. This value is the time in milliseconds between
two mouse clicks in a menu to be considered as a double click. The default is 450 milliseconds. If
the argument is omitted the double click time is reset to this default.

SidePic takes the name of an image file as an argument. The picture is drawn along the left side of
the menu. The SidePic option can be overridden by a menu specific side pixmap (see
AddToMenu). If the file name is omitted an existing side pixmap is removed from the menu
style.

SideColor takes the name of an X11 color as an argument. This color is used to color the column
containing the side picture (see above). The SideColor option can be overridden by a menu
specific side color (see AddToMenu). If the color name is omitted the side color option is
switched off.

PopupAsRootMenu, PopupAsSubmenu, PopupIgnore and PopupClose change the behavior when
you click on a menu item that opens a sub menu. With PopupAsRootMenu the original menu is
closed before the sub menu appears, with PopupAsSubmenu it is not, so you can navigate back into
the parent menu. Furthermore, with PopupAsSubmenu the sub menu is held open (posted)
regardless of where you move the mouse. Depending on your menu style this may simplify
navigating through the menu. Any keystroke while a menu is posted reverts the menu back to the
normal behavior. With PopupClose the menu is closed when a sub menu item is activated, and the
menu stays open if PopupIgnore is used (even if the menu was invoked with the Popup
command). PopupAsSubmenu is the default.

RemoveSubmenus instructs fvwm to remove sub menu when you move back into the parent menu.
With HoldSubmenus the sub menu remains visible. You probably want to use HoldSubmenus if
you are using the PopupDelayed style. RemoveSubmenus affects menu navigation with the
keyboard.

05-Sep-2019 34

FVWM(1) Fvwm 2.6.9 FVWM(1)

SelectOnRelease takes an optional key name as an argument. If the given key is released in a
menu using this style, the current menu item is selected. This is intended for Alt-Tab WindowList
navigation. The key name is a standard X11 key name as defined in /usr/include/X11/keysymdef.h,
(without the XK_ prefix), or the keysym database /usr/X11R6/lib/X11/XKeysymDB. To disable this
behavior, omit the key name.

Note: Some X servers do not support KeyRelease events. SelectOnRelease does not work on such
a machine.

ItemFormat takes a special string as its argument that determines the layout of the menu items.
Think of the format string as if it were a menu item. All you have to do is tell fvwm where to
place the different parts of the menu item (i.e. the labels, the triangle denoting a sub menu, the
mini icons and the side pic) in the blank area. The string consists of spaces, Tab characters and
formatting directives beginning with ’%’. Any illegal characters and formatting directives are
silently ignored:

%l, %c and %r
Insert the next item label. Up to three labels can be used. The item column is left-aligned
(%l), centered (%c) or right-aligned (%r).

%i
Inserts the mini icon.

%> and %<
Insert the sub menu triangle pointing either to the right (%>) or to the left (%<).

%|
The first %| denotes the beginning of the area that is highlighted either with a background
color or a relief (or both). The second %| marks the end of this area. %| can be used up to
twice in the string. If you do not add one or both of them, fvwm sets the margins to the
margins of the whole item (not counting the side picture).

%s
Places the side picture either at the beginning or the end of the menu. This directive may be
used only once and only as the first or last in the format string. If the %s is not at the
beginning of the string, menus are not drawn properly.

Space, Tab, %Space and %Tab
Add gap of one space, or a tab, using the width of the menu font. When using a tab, the size
of the gap can be one to 8 spaces since the tab position is a multiple of 8 from the edge of the
menu. The whole string must be quoted if spaces or tabs are used.

%p
Like Space and Tab %p inserts an empty area into the item, but with better control of its size
(see below).

You can define an additional space before and after each of the objects like this:

%left.rightp

This means: if the object is defined in the menu (e.g. if it is %s and you use a side picture, or it is
%l for the third column and there are items defined that actually have a third column), then add
left pixels before the object and right pixels after it. You may leave out the left or the .right parts if
you do not need them. All values up to the screen width are allowed. Even negative values can be
used with care. The p may be replaced with any other formatting directives described above.

Note: Only items defined in the format string are visible in the menus. So if you do not put a %s
in there you do not see a side picture, even if one is specified.

Note: The SubmenusLeft style changes the default ItemFormat string, but if it was set manually it
is not modified.

Note: If any unformatted title of the menu is wider than the widest menu item, the spaces between

05-Sep-2019 35

FVWM(1) Fvwm 2.6.9 FVWM(1)

the different parts of the menu items are enlarged to match the width of the title. Leading left
aligned objects in the format string (%l, %i, %<, first %|) stick to the left edge of the menu and
trailing right aligned objects (%r, %i, %>, second %|) stick to the right edge. The gaps between
the remaining items are enlarged equally.

Examples:

MenuStyle * ItemFormat "%.4s%.1|%.5i%.5l%.5l%.5r%.5i%2.3>%1|"

Is the default string used by fvwm: (side picture + 4 pixels gap) (beginning of the hilighted area +
1 pixel gap) (mini icon + 5p) (first column left aligned + 5p) (second column left aligned + 5p)
(third column right aligned + 5p) (second mini icon + 5p) (2p + sub menu triangle + 3p) (1p + end
of hilighted area).

MenuStyle * ItemFormat "%.1|%3.2<%5i%5l%5l%5r%5i%1|%4s"

Is used by fvwm with the SubmenusLeft option below.

VerticalItemSpacing and VerticalTitleSpacing control the vertical spacing of menu items and titles
like ItemFormat controls the horizontal spacing. Both take two numeric arguments that may range
from -100 to +100. The first is the gap in pixels above a normal menu item (or a menu title), the
second is the gap in pixels below it. Negative numbers do not make much sense and may screw up
the menu completely. If no arguments are given or the given arguments are invalid, the built-in
defaults are used: one pixel above the item or title and two below.

VerticalMargins can be used to add some padding at the top and bottom of menus. It takes two
numeric arguments that must be positive integers (or zero). If the number of arguments or its
values are incorrect, fvwm defaults both to 0, which means no padding at all. If the values are
correct, the first one is used for the top margin, and the second one is used for the bottom margin.

SubmenusLeft mirrors the menu layout and behavior. Sub menus pop up to the left, the sub menu
triangle is drawn left and the mini icon and side picture are drawn at the right side of the menu.
The default is SubmenusRight. The position hints of a menu are also affected by this setting, i.e.
position hints using item or menu as context rectangle and position hints using m offsets.

AutomaticHotkeys and !AutomaticHotkeys control the menu’s ability to automatically provide
hot-keys on the first character of each menu item’s label. This behavior is always overridden if an
explicit hot-key is assigned in the AddToMenu command.

UniqueHotkeyActivatesImmediate and !UniqueHotkeyActivatesImmediate controls how menu
items are invoked when used with hotkeys. By default, if a given menu entry only has one
completeable match for a given hotkey, the action for that menu entry is invoked and the menu is
closed. This is due to the UniqueHotkeyActivatesImmediate option. However, the menu can be
told to remain open, waiting for the user to invoke the selected item instead when there is only one
matched item for a given hotkey, by using the !UniqueHotkeyActivatesImmediate option.

MouseWheel controls the ability to scroll the menu using a mouse wheel. It takes one argument,
that can be one of ScrollsPointer, ScrollsMenu, ScrollsMenuBackwards or ActivatesItem.
ScrollsPointer makes the mouse wheel scroll the pointer over a menu. This is the default.
ScrollsMenu and ScrollsMenuBackwards scroll the menu beneath the pointer. ActivatesItem
disables scrolling by mouse wheel and makes the use of a mouse wheel act as if the menu was
clicked. If no argument is supplied the default setting is restored.

ScrollOffPage allows a menu to be scrolled out of the visible area if MouseWheel is set to
ScrollsMenu or ScrollsMenuBackwards. This is the default. The opposite, !ScrollOffPage
disables this behaviour.

TrianglesUseFore draws sub menu triangles with the foreground color of the menu colorset
(normally drawn with the hilight color). !TrianglesUseFore disables this behaviour.

Examples:

05-Sep-2019 36

FVWM(1) Fvwm 2.6.9 FVWM(1)

MenuStyle * Mwm
MenuStyle * Foreground Black, Background gray40
MenuStyle * Greyed gray70, ActiveFore White
MenuStyle * !HilightBack, Hilight3DOff
MenuStyle * Font lucidasanstypewriter-14
MenuStyle * MenuFace DGradient 64 darkgray MidnightBlue

MenuStyle red Mwm
MenuStyle red Foreground Yellow
MenuStyle red Background Maroon
MenuStyle red Greyed Red, ActiveFore Red
MenuStyle red !HilightBack, Hilight3DOff
MenuStyle red Font lucidasanstypewriter-12
MenuStyle red MenuFace DGradient 64 Red Black

Note that all style options could be placed on a single line for each style name.

MenuStyle forecolor backcolor shadecolor font style [anim]
This is the old syntax of the MenuStyle command. It is obsolete and may be removed in the
future. Please use the new syntax as described above.

Sets the menu style. When using monochrome the colors are ignored. The shadecolor is the one
used to draw a menu-selection which is prohibited (or not recommended) by the Mwm hints
which an application has specified. The style option is either Fvwm, Mwm or Win, which changes
the appearance and operation of the menus.

Mwm and Win style menus popup sub menus automatically. Win menus indicate the current menu
item by changing the background to black. Fvwm sub menus overlap the parent menu, Mwm and
Win style menus never overlap the parent menu.

When the anim option is given, sub menus that do not fit on the screen cause the parent menu to be
shifted to the left so the sub menu can be seen. See also SetAnimation command.

Popup PopupName [position] [default-action]
This command has two purposes: to bind a menu to a key or mouse button, and to bind a sub menu
into a menu. The formats for the two purposes differ slightly. The position arguments are the
same as for Menu. The command default-action is invoked if the user clicks a button to invoke
the menu and releases it immediately again (or hits the key rapidly twice if the menu is bound to a
key). If the default action is not specified, double clicking on the menu does nothing. However, if
the menu begins with a menu item (i.e. not with a title or a separator) and the default action is not
given, double clicking invokes the first item of the menu (but only if the pointer really was over the
item).

To bind a previously defined pop-up menu to a key or mouse button:

The following example binds mouse buttons 2 and 3 to a pop-up called "Window Ops". The
menu pops up if the buttons 2 or 3 are pressed in the window frame, side-bar, or title-bar, with no
modifiers (none of shift, control, or meta).

Mouse 2 FST N Popup "Window Ops"
Mouse 3 FST N Popup "Window Ops"

Pop-ups can be bound to keys through the use of the Key command. Pop-ups can be operated
without using the mouse by binding to keys and operating via the up arrow, down arrow, and enter
keys.

To bind a previously defined pop-up menu to another menu, for use as a sub menu:

The following example defines a sub menu "Quit-Verify" and binds it into a main menu, called
"RootMenu":

05-Sep-2019 37

FVWM(1) Fvwm 2.6.9 FVWM(1)

AddToMenu Quit-Verify
+ "Really Quit Fvwm?" Title
+ "Yes, Really Quit" Quit
+ "Restart Fvwm" Restart
+ "Restart Fvwm 1.xx" Restart fvwm1 -s
+ "" Nop
+ "No, Don’t Quit" Nop

AddToMenu RootMenu "Root Menu" Title
+ "Open XTerm Window" Popup NewWindowMenu
+ "Login as Root" Exec exec xterm -T Root -n Root -e su -
+ "Login as Anyone" Popup AnyoneMenu
+ "Remote Hosts" Popup HostMenu
+ "" Nop
+ "X utilities" Popup Xutils
+ "" Nop
+ "Fvwm Modules" Popup Module-Popup
+ "Fvwm Window Ops" Popup Window-Ops
+ "" Nop
+ "Previous Focus" Prev (AcceptsFocus) Focus
+ "Next Focus" Next (AcceptsFocus) Focus
+ "" Nop
+ "Refresh screen" Refresh
+ "" Nop
+ "Reset X defaults" Exec xrdb -load \

$HOME/.Xdefaults
+ "" Nop
+ "" Nop
+ Quit Popup Quit-Verify

Popup differs from Menu in that pop-ups do not stay up if the user simply clicks. These are
popup-menus, which are a little hard on the wrist. Menu menus stay up on a click action. See the
Menu command for an explanation of the interactive behavior of menus. A menu can be open up
to ten times at once, so a menu may even use itself or any of its predecessors as a sub menu.

TearMenuOff
When assigned to a menu item, it inserts a tear off bar into the menu (a horizontal broken line).
Activating that item tears off the menu. If the menu item has a label, it is shown instead of the
broken line. If used outside menus, this command does nothing. Examples:

AddToMenu WindowMenu
+ I "" TearMenuOff

AddToMenu RootMenu
+ I "click here to tear me off" TearMenuOff

Title
Does nothing This is used to insert a title line in a popup or menu.

Miscellaneous Commands
BugOpts [option [bool]], ...

This command controls several workarounds for bugs in third party programs. The individual
options are separated by commas. The optional argument bool is a boolean argument and controls
if the bug workaround is enabled or not. It can either be "True" or "False" to turn the option on or
off, or "toggle" to switch is back and forth. If bool is omitted, the default setting is restored.

FlickeringMoveWorkaround disables ConfigureNotify events that are usually sent to an application

05-Sep-2019 38

FVWM(1) Fvwm 2.6.9 FVWM(1)

while it is moved. If some windows flicker annoyingly while being moved, this option may help
you. Note that if this problem occurs it is not an fvwm bug, it is a problem of the application.

MixedVisualWorkaround makes fvwm install the root colormap before it does some operations
using the root window visuals. This is only useful when the -visual option is used to start fvwm
and then only with some configurations of some servers (e.g. Exceed 6.0 with an 8 bit
PseudoColor root and fvwm using a 24 bit TrueColor visual).

The ModalityIsEvil option controls whether Motif applications have the ability to have modal
dialogs (dialogs that force you to close them first before you can do anything else). The default is
to not allow applications to have modal dialogs. Use this option with care. Once this option is
turned on, you have to restart fvwm to turn it off.

RaiseOverNativeWindows makes fvwm try to raise the windows it manages over native windows
of the X server’s host system. This is needed for some X servers running under Windows,
Windows NT or Mac OS X. Fvwm tries to detect if it is running under such an X server and
initializes the flag accordingly.

RaiseOverUnmanaged makes fvwm try to raise the windows it manages over override_redirect
windows. This is used to cope with ill-mannered applications that use long-lived windows of this
sort, contrary to ICCCM conventions. It is useful with the Unmanaged style option too.

FlickeringQtDialogsWorkaround suppresses flickering of the focused window in some modules
when using KDE or QT applications with application modal dialog windows. By default this
option is turned on. This option may be visually disturbing for other applications using windows
not managed by fvwm. Since these applications are rare it is most likely safe to leave this option
at its default.

QtDragnDropWorkaround suppresses the forwarding of unknown ClientEvent messages to
windows -- usually this is harmless, but Qt has problems handling unrecognised ClientEvent
messages. Enabling this option might therefore help for Qt applications using DragnDrop. This
option is off by default.

EWMHIconicStateWorkaround is needed by EWMH compliant pagers or taskbars which represent
windows which are on a different desktops as iconified. These pagers and taskbars use a version
of the EWMH specification before version 1.2 (the current KDE 2 & 3 versions). These pagers
and taskbars use the IconicState WM_STATE state to determine if an application is iconified. This
state, according to the ICCCM, does not imply that a window is iconified (in the usual sense).
Turning on this option forces fvwm to establish an equivalence between the IconicState
WM_STATE state and the iconified window. This violates ICCCM compliance but should not
cause big problems. By default this option is off.

With the DisplayNewWindowNames enabled, fvwm prints the name, icon name (if available),
resource and class of new windows to the console. This can help in finding the correct strings to
use in the Style command.

When the ExplainWindowPlacement option is enabled, fvwm prints a message to the console
whenever a new window is placed or one of the commands PlaceAgain, Recapture or
RecaptureWindow is used. The message explains on which desk, page, Xinerama screen and
position it was placed and why. This option can be used to figure out why a specific window does
not appear where you think it should.

The DebugCRMotionMethod option enables some debugging code in the ConfigureRequest
handling routines of fvwm. It is not helpful for the user, but if you report a bug to the fvwm team
we may ask you to enable this option.

The TransliterateUtf8 option enables transliteration during conversions from utf-8 strings. By
default fvwm will not transliterate during conversion, but will fall back to alternate strings
provided by the clients if conversion from utf-8 fails due to characters which have no direct
correspondence in the target charecter set. Some clients however neglect to set non utf-8
properties correctly in which case this option may help.

05-Sep-2019 39

FVWM(1) Fvwm 2.6.9 FVWM(1)

BusyCursor [Option bool], ...
This command controls the cursor during the execution of certain commands. Option can be
DynamicMenu, ModuleSynchronous, Read, Wait or *. An option must be followed by a boolean
argument bool. You can use commas to separate individual options. If you set an option to
"True", then when the corresponding command is run, fvwm displays the cursor of the WAIT
context of the CursorStyle command. "False" forces to not display the cursor. The default is:

BusyCursor DynamicMenu False, ModuleSynchronous False, \
Read False, Wait False

The * option refers to all available options.

The Read option controls the PipeRead command.

The DynamicMenu option affects the DynamicPopupAction and MissingSubmenuFunction options
of the AddToMenu command. If this option is set to "False", then the busy cursor is not
displayed during a dynamic menu command even if this command is a Read or PipeRead
command and the Read option is set to "True".

The ModuleSynchronous option affects the ModuleSynchronous command. If this option is set
to "False", then the busy cursor is not displayed while fvwm waits for a module started by
ModuleSynchronous to complete its startup.

The Wait option affects only the root cursor. During a wait pause the root cursor is replaced by the
busy cursor and fvwm is still fully functional (you can escape from the pause, see the EscapeFunc
command). If you want to use this option and if you do not use the default root cursor, you must
set your root cursor with the CursorStyle command.

ClickTime [delay]
Specifies the maximum delay in milliseconds between a button press and a button release for the
Function command to consider the action a mouse click. The default delay is 150 milliseconds.
Omitting the delay value resets the ClickTime to the default.

ColorLimit limit
This command is obsolete. See the --color-limit option to fvwm.

ColormapFocus FollowsMouse | FollowsFocus
By default, fvwm installs the colormap of the window that the cursor is in. If you use

ColormapFocus FollowsFocus

then the installed colormap is the one for the window that currently has the keyboard focus.

CursorStyle context [num | name | None | Tiny | file [x y] [fg bg]]
Defines a new cursor for the specified context. Note that this command can not control the shapes
an applications uses, for example, to indicate that it is busy. The various contexts are:

POSITION (top_left_corner)
used when initially placing windows

TITLE (top_left_arrow)
used in a window title-bar

DEFAULT (top_left_arrow)
used in windows that do not set their cursor

SYS (hand2)
used in one of the title-bar buttons

MOVE (fleur)
used when moving or resizing windows

RESIZE (sizing)
used when moving or resizing windows

05-Sep-2019 40

FVWM(1) Fvwm 2.6.9 FVWM(1)

WAIT (watch)
used during certain fvwm commands (see BusyCursor for details)

MENU (top_left_arrow)
used in menus

SELECT (crosshair)
used when the user is required to select a window

DESTROY (pirate)
used for Destroy, Close, and Delete commands

TOP (top_side)
used in the top side-bar of a window

RIGHT (right_side)
used in the right side-bar of a window

BOTTOM (bottom_side)
used in the bottom side-bar of a window

LEFT (left_side)
used in the left side-bar of a window

TOP_LEFT (top_left_corner)
used in the top left corner of a window

TOP_RIGHT (top_right_corner)
used in the top right corner of a window

BOTTOM_LEFT (bottom_left_corner)
used in the bottom left corner of a window

BOTTOM_RIGHT (bottom_right_corner)
used in the bottom right corner of a window

TOP_EDGE (top_side)
used at the top edge of the screen

RIGHT_EDGE (right_side)
used at the right edge of the screen

BOTTOM_EDGE (bottom_side)
used at the bottom edge of the screen

LEFT_EDGE (left_side)
used at the left edge of the screen

ROOT (left_ptr)
used as the root cursor

STROKE (plus)
used during a StrokeFunc command.

The defaults are shown in parentheses above. If you ever want to restore the default cursor for a
specific context you can omit the second argument.

The second argument is either the numeric value of the cursor as defined in the include file
X11/cursorfont.h or its name (without the XC_ prefix). Alternatively, the xpm file name may be
specified. The name can also be None (no cursor) or Tiny (a single pixel as the cursor).

make the kill cursor be XC_gumby (both forms work):
CursorStyle DESTROY 56
CursorStyle DESTROY gumby

Alternatively, the cursor can be loaded from an (XPM, PNG or SVG) image file. If fvwm is

05-Sep-2019 41

FVWM(1) Fvwm 2.6.9 FVWM(1)

compiled with Xcursor support, full ARGB is used, and (possibly animated) cursor files made
with the xcursorgen program can be loaded. Otherwise the cursor is converted to monochrome.

The optional x and y arguments (following a file argument) specifies the hot-spot coordinate with
0 0 as the top left corner of the image. Coordinates within the image boundary are valid and
overrides any hot-spot defined in the (XPM/Xcursor) image file. An invalid or undefined hot-spot
is placed in the center of the image.

CursorStyle ROOT cursor_image.png 0 0

The optional fg and bg arguments specify the foreground and background colors for the cursor,
defaulting to black and white (reverse video compared to the actual bitmap). These colors are only
used with monochrome cursors. Otherwise they are silently ignored.

CursorStyle ROOT nice_arrow.xpm yellow black

DefaultColors [foreground] [background]
DefaultColors sets the default foreground and background colors used in miscellaneous windows
created by fvwm, for example in the geometry feedback windows during a move or resize
operation. If you do not want to change one color or the other, use - as its color name. To revert
to the built-in default colors omit both color names. Note that the default colors are not used in
menus, window titles or icon titles.

DefaultColorset [num]
DefaultColorset sets the colorset used by the windows controlled by the DefaultColors
command. To revert back to the DefaultColors colors use

DefaultColorset -1

or any variant of the DefaultColors command.

DefaultFont [fontname]
DefaultFont sets the default font to font fontname. The default font is used by fvwm whenever no
other font has been specified. To reset the default font to the built-in default, omit the argument.
The default font is used for menus, window titles, icon titles as well as the geometry feedback
windows during a move or resize operation. To override the default font in a specific context, use
the Style * Font, Style * IconFont, or MenuStyle commands.

DefaultIcon filename
Sets the default icon which is used if a window has neither an client-supplied icon nor an icon
supplied via the Icon option of the Style command.

DefaultLayers bottom put top
Changes the layers that are used for the StaysOnBottom, StaysPut, StaysOnTop Style options.
Initially, the layers 2, 4 and 6 are used.

Deschedule [command_id]
Removes all commands that were scheduled with the id command_id with the Schedule command
from the list of commands to be executed unless they were already executed. If the command_id
is omitted, the value of the variable $[schedule.last] is used as the id.

Emulate Fvwm | Mwm | Win
This command is a catch all for how miscellaneous things are done by fvwm. Right now this
command affects where the move/resize feedback window appears and how window placement is
aborted. To have more Mwm- or Win-like behavior you can call Emulate with Mwm or Win as
its argument. With Mwm resize and move feedback windows are in the center of the screen,
instead of the upper left corner. This also affects how manual placement is aborted. See the
ManualPlacement description.

05-Sep-2019 42

FVWM(1) Fvwm 2.6.9 FVWM(1)

EscapeFunc
By default the key sequence Ctrl-Alt-Escape allows for escaping from a Wait pause and from a
locked ModuleSynchronous command. The EscapeFunc command used with the Key command
allows for configuring this key sequence. An example:

Key Escape A MC -
Key Escape A S EscapeFunc

replaces the Ctrl-Alt-Escape key sequence with Shift-Escape for aborting a Wait pause and
ModuleSynchronous command. EscapeFunc used outside the Key command does nothing.

FakeClick [command value] ...
This command is mainly intended for debugging fvwm and no guarantees are made that it works
for you. FakeClick can simulate mouse button press and release events and pass them to fvwm or
the applications. The parameters are a list of commands which consist of pairs of command
tokens and integer values, The press and release commands are followed by the appropriate mouse
button number and generate a button press or release event on the window below the pointer. The
wait commands pauses fvwm for the given number of milliseconds. The modifiers command
simulates pressing or releasing modifier keys. The values 1 to 5 are mapped to Mod1 to Mod5
while 6, 7 and 8 are mapped to Shift , Lock and Control The modifier is set for any further button
events. To release a modifier key, use the corresponding negative number. The depth command
determines to which window the button events are sent. With a depth of 1, all events go to the root
window, regardless of the pointer’s position. With 2, the event is passed to the top level window
under the pointer which is usually the frame window. With 3, events go to the client window.
Higher numbers go to successive sub windows. Zero (0) goes to the smallest window that contains
the pointer. Note that events propagate upward.

FakeClick depth 2 press 1 wait 250 release 1

This simulates a click with button 1 in the parent window (depth 2) with a delay of 250
milliseconds between the press and the release. Note: all command names can be abbreviated with
their first letter.

FakeKeypress [command value] ...
This command is mainly intended for debugging fvwm and no guarantees are made that it works
for you. FakeKeypress can simulate key press and release events and pass them to fvwm or
applications. The parameters are a list of commands which consist of pairs of command tokens
and values. The press and release commands are followed by a key name. The key name is a
standard X11 key name as defined in /usr/include/X11/keysymdef.h, (without the XK_ prefix), or
the keysym database /usr/X11R6/lib/X11/XKeysymDB. The wait, modifiers and depth commands
are the same as those used by FakeClick.

Save all GVim sessions with: "Esc:w\n"

All (gvim) FakeKeypress press Escape \
press colon \
press w \
press Return

Save & exit all GVim sessions with: "Esc:wq\n"

All (gvim) FakeKeypress press Escape \
press colon \
press w \
press q \
press Return

Send A to a specific window:

05-Sep-2019 43

FVWM(1) Fvwm 2.6.9 FVWM(1)

WindowId 0x3800002 FakeKeypress press A

Note: all command names can be abbreviated with their first letter.

GlobalOpts [options]
This command is obsolete. Please replace the global options in your configuration file according
to the following table:

GlobalOpts WindowShadeShrinks
-->

Style * WindowShadeShrinks

GlobalOpts WindowShadeScrolls
-->

Style * WindowShadeScrolls

GlobalOpts SmartPlacementIsReallySmart
-->

Style * MinOverlapPlacement

GlobalOpts SmartPlacementIsNormal
-->

Style * TileCascadePlacement

GlobalOpts ClickToFocusDoesntPassClick
-->

Style * ClickToFocusPassesClickOff

GlobalOpts ClickToFocusPassesClick
-->

Style * ClickToFocusPassesClick

GlobalOpts ClickToFocusDoesntRaise
-->

Style * ClickToFocusRaisesOff

GlobalOpts ClickToFocusRaises
-->

Style * ClickToFocusRaises

GlobalOpts MouseFocusClickDoesntRaise
-->

Style * MouseFocusClickRaisesOff

GlobalOpts MouseFocusClickRaises
-->

Style * MouseFocusClickRaises

GlobalOpts NoStipledTitles
-->

Style * !StippledTitle

GlobalOpts StipledTitles
-->

Style * StippledTitle

05-Sep-2019 44

FVWM(1) Fvwm 2.6.9 FVWM(1)

GlobalOpts CaptureHonorsStartsOnPage
-->

Style * CaptureHonorsStartsOnPage

GlobalOpts CaptureIgnoresStartsOnPage
-->

Style * CaptureIgnoresStartsOnPage

GlobalOpts RecaptureHonorsStartsOnPage
-->

Style * RecaptureHonorsStartsOnPage

GlobalOpts RecaptureIgnoresStartsOnPage
-->

Style * RecaptureIgnoresStartsOnPage

GlobalOpts ActivePlacementHonorsStartsOnPage
-->

Style * ManualPlacementHonorsStartsOnPage

GlobalOpts ActivePlacementIgnoresStartsOnPage
-->

Style * ManualPlacementIgnoresStartsOnPage

GlobalOpts RaiseOverNativeWindows
-->

BugOpts RaiseOverNativeWindows on

GlobalOpts IgnoreNativeWindows
-->

BugOpts RaiseOverNativeWindows off

HilightColor textcolor backgroundcolor
This command is obsoleted by the Style options HilightFore and HilightBack. Please use

Style * HilightFore textcolor, HilightBack backgroundcolor

instead.

HilightColorset [num]
This command is obsoleted by the Style option HilightColorset. Please use

Style * HilightColorset num

instead.

IconFont [fontname]
This command is obsoleted by the Style option IconFont. Please use

Style * IconFont fontname

instead.

IconPath path
This command is obsolete. Please use ImagePath instead.

05-Sep-2019 45

FVWM(1) Fvwm 2.6.9 FVWM(1)

ImagePath path
Specifies a colon separated list of directories in which to search for images (both monochrome and
pixmap). To find an image given by a relative pathname, fvwm looks into each directory listed in
turn, and uses the first file found.

If a directory is given in the form "/some/dir;.ext", this means all images in this directory have the
extension ".ext" that should be forced. The original image name (that may contain another
extension or no extension at all) is not probed, instead ".ext" is added or replaces the original
extension. This is useful, for example, if a user has some image directories with ".xpm" images
and other image directories with the same names, but ".png" images.

The path may contain environment variables such as $HOME (or ${HOME}). Further, a ’+’ in the
path is expanded to the previous value of the path, allowing appending or prepending to the path
easily.

For example:

ImagePath $HOME/icons:+:/usr/include/X11/bitmaps

Note: if the FvwmM4 module is used to parse your config files, then m4 may want to mangle the
word "include" which frequently shows up in the ImagePath command. To fix this one may add

undefine(‘include’)

prior to the ImagePath command, or better: use the -m4-prefix option to force all m4 directives
to have a prefix of "m4_" (see the FvwmM4 man page).

LocalePath path
Specifies a colon separated list of "locale path" in which to search for string translations. A locale
path is constituted by a directory path and a text domain separated by a semicolon (’;’). As an
example the default locale path is:

/install_prefix/share/locale;fvwm

where install_prefix is the fvwm installation directory. With such a locale path translations are
searched for in

/install_prefix/share/locale/lang/LC_MESSAGES/fvwm.mo

where lang depends on the locale. If no directory is given the default directory path is assumed. If
no text domain is given, fvwm is assumed. Without argument the default locale path is restored.

As for the ImagePath command, path may contain environment variables and a ’+’ to append or
prepend the locale path easily.

For example, the fvwm-themes package uses

LocalePath ";fvwm-themes:+"

to add locale catalogs.

The default fvwm catalog contains a few strings used by the fvwm executable itself (Desk and
Geometry) and strings used in some default configuration files and FvwmForm configuration.
You can take a look at the po/ subdirectory of the fvwm source to get the list of the strings with a
possible translation in various languages. At present, very few languages are supported.

The main use of locale catalogs is via the "$[gt.string]" parameter:

DestroyMenu MenuFvwmWindowOps
AddToMenu MenuFvwmWindowOps "$[gt.Window Ops]" Title
+ "$[gt.&Move]" Move
+ "$[gt.&Resize]" Resize

05-Sep-2019 46

FVWM(1) Fvwm 2.6.9 FVWM(1)

+ "$[gt.R&aise]" Raise
+ "$[gt.&Lower]" Lower
+ "$[gt.(De)&Iconify]" Iconify
+ "$[gt.(Un)&Stick]" Stick
+ "$[gt.(Un)Ma&ximize]" Maximize
+ "" Nop
+ "$[gt.&Close]" Close
+ "$[gt.&Destroy]" Destroy

gives a menu in the locale languages if translations are available.

Note that the FvwmScript module has a set of special instructions for string translation. It is out
of the scope of this discussion to explain how to build locale catalogs. Please refer to the GNU
gettext documentation.

PixmapPath path
This command is obsolete. Please use ImagePath instead.

PrintInfo subject [verbose]
Print information on subject on stderr. An optional integer argument verbose defines the level of
information which is given. The current valid subjects are:

Colors which prints information about the colors used by fvwm. This useful on screens which can
only display 256 (or less) colors at once. If verbose is one or greater the palette used by fvwm is
printed. If you have a limited color palette, and you run out of colors, this command might be
helpful.

ImageCache which prints information about the images loaded by fvwm. If verbose is one or
greater all images in the cache will be listed together with their respective reuse.

Locale which prints information on your locale and the fonts that fvwm used. verbose can be 1 or
2.

nls which prints information on the locale catalogs that fvwm used

style which prints information on fvwm styles. verbose can be 1.

bindings which prints information on all the bindings fvwm has: key, mouse and stroke bindings.
verbose has no effect with this option.

infostore which prints information on all entries in the infostore, listing the key and its value.
verbose has no effect with this option.

Repeat
When the Repeat command is invoked, the last command that was executed by fvwm is executed
again. This happens regardless of whether it was triggered by user interaction, a module or by an
X event. Commands that are executed from a function defined with the Function command, from
the Read or PipeRead commands or by a menu are not repeated. Instead, the function, menu or
the Read or PipeRead command is executed again.

Schedule [Periodic] delay_ms [command_id] command
The command is executed after about delay_ms milliseconds. This may be useful in some tricky
setups. The command is executed in the same context window as the Schedule command. An
optional integer argument command_id may be given in decimal, hexadecimal or octal format.
This id can be used with the Deschedule command to remove the scheduled command before it is
executed. If no id is given, fvwm uses negative id numbers, starting with -1 and decreasing by
one with each use of the Schedule command. Note that the Schedule command and its arguments
undergo the usual command line expansion, and, when command is finally executed, it is
expanded again. It may therefore be necessary to quote the parts of the command that must not be
expanded twice.

Note: A window’s id as it is returned with $[w.id] can be used as the command_id. Example:

05-Sep-2019 47

FVWM(1) Fvwm 2.6.9 FVWM(1)

Current Schedule 1000 $[w.id] WindowShade

The Schedule command also supports the optional keyword Periodic which indicates that the
command should be executed every delay_ms. Example:

Schedule Periodic 10000 PipeRead ’[-N "$MAIL"] && echo \
Echo You have mail’

Use the Deschedule command to stop periodic commands.

State state [bool]
Sets, clears or toggles one of the 32 user defined states which are associated with each window.
The state is a number ranging from 0 to 31. The states have no meaning in fvwm, but they can be
checked in conditional commands like Next with the State condition. The optional argument bool
is a boolean argument. "True" sets the given state, while "False" clears it. Using "toggle"
switches to the opposite state. If the bool argument is not given, the state is toggled.

WindowFont [fontname]
This command is obsoleted by the Style option Font. Please use

Style * Font fontname

instead.

WindowList [(conditions)] [position] [options] [double-click-action]
Generates a pop-up menu (and pops it up) in which the title and geometry of each of the windows
currently on the desktop are shown.

The format of the geometry part is: desk(layer): x-geometry sticky, where desk and layer are the
corresponding numbers and sticky is empty or a capital S. The geometry of iconified windows is
shown in parentheses. Selecting an item from the window list pop-up menu causes the interpreted
function "WindowListFunc" to be run with the window id of that window passed in as $0. The
default "WindowListFunc" looks like this:

AddToFunc WindowListFunc
+ I Iconify off
+ I FlipFocus
+ I Raise
+ I WarpToWindow 5p 5p

You can destroy the built-in "WindowListFunc" and create your own if these defaults do not suit
you.

The window list menu uses the "WindowList" menu style if it is defined (see MenuStyle
command). Otherwise the default menu style is used. To switch back to the default menu style,
issue the command

DestroyMenuStyle WindowList

Example:

MenuStyle WindowList SelectOnRelease Meta_L

The conditions can be used to exclude certain windows from the window list. Please refer to the
Current command for details. Only windows that match the given conditions are displayed in the
window list. The options below work vice versa: windows that would otherwise not be included in
the window list can be selected with them. The conditions always override the options.

The position arguments are the same as for Menu. The command double-click-action is invoked
if the user double-clicks (or hits the key rapidly twice if the menu is bound to a key) when
bringing the window list. The double-click-action must be quoted if it consists of more than one
word.

05-Sep-2019 48

FVWM(1) Fvwm 2.6.9 FVWM(1)

The double-click-action is useful to define a default window if you have bound the window list
to a key (or button) like this:

Here we call an existing function, but
it may be different. See the default
WindowListFunc definition earlier in this
man page.
AddToFunc SwitchToWindow
+ I WindowListFunc

Key Tab A M WindowList "Prev SwitchToWindow"

Hitting Alt-Tab once it brings up the window list, if you hit it twice the focus is flipped between the
current and the last focused window. With the proper SelectOnRelease menu style (see example
above) a window is selected as soon as you release the Alt key.

The options passed to WindowList are separated by commas and can be Geometry / NoGeometry /
NoGeometryWithInfo, NoDeskNum, NoLayer, NoNumInDeskTitle, NoCurrentDeskTitle,
MaxLabelWidth width, TitleForAllDesks, Function funcname, Desk desknum, CurrentDesk,
NoIcons / Icons / OnlyIcons, NoNormal / Normal / OnlyNormal, NoSticky / Sticky / OnlySticky,
NoStickyAcrossPages / StickyAcrossPages / OnlyStickyAcrossPages, NoStickyAcrossDesks /
StickyAcrossDesks / OnlyStickyAcrossDesks, NoOnTop / OnTop / OnlyOnTop, NoOnBottom /
OnBottom / OnlyOnBottom, Layer m [n], UseSkipList / OnlySkipList, NoDeskSort, ReverseOrder,
CurrentAtEnd, IconifiedAtEnd, UseIconName, Alphabetic / NotAlphabetic, SortByResource,
SortByClass, NoHotkeys, SelectOnRelease.

(Note - normal means not iconic, sticky, or on top)

With the SortByResource option windows are alphabetically sorted first by resource class, then by
resource name and then by window name (or icon name if UseIconName is specified).
ReverseOrder also works in the expected manner.

With the SortByClass option windows are sorted just like with SortByResource, but the resource
name is not taken into account, only the resource class.

The SelectOnRelease option works exactly like the MenuStyle option with the same name, but
overrides the option given in a menu style. By default, this option is set to the left Alt key. To
switch it off, use SelectOnRelease without a key name.

If you pass in a function via Function funcname, it is called within a window context of the
selected window:

AddToFunc IFunc I Iconify toggle
WindowList Function IFunc, NoSticky, CurrentDesk, NoIcons

If you use the Layer m [n] option, only windows in layers between m and n are displayed. n
defaults to m. With the ReverseOrder option the order of the windows in the list is reversed.

With the CurrentAtEnd option the currently focused window (if any) is shown at the bottom of the
list. This is mostly intended for simulating the Alt-Tab behavior in another GUI.

IconifiedAtEnd makes iconified windows be moved to the end of the list. This is also from another
GUI.

The NoGeometry option causes fvwm to not display the geometries as well as the separators which
indicate the different desktops. NoGeometryWithInfo removes the geometries, but keep the
desktop information and indicates iconic windows. NoDeskNum causes fvwm to not display the
desktop number in the geometry or before the window title with the NoGeometryWithInfo option.
NoNumInDeskTitle is only useful if a desktop name is defined with the DesktopName command.
It causes fvwm to not display the desktop number before the desktop name. By default, the
WindowList menu have a title which indicates the current desk or the selected desktop if the Desk

05-Sep-2019 49

FVWM(1) Fvwm 2.6.9 FVWM(1)

condition is used. The NoCurrentDeskTitle option removes this title. TitleForAllDesks causes
fvwm to add a menu title with the desk name and/or number before each group of windows on the
same desk. With NoLayer, the layer of the window is not diplayed. The options ShowPage,
ShowPageX and ShowPageY enable displaying the page of the window rounded multiples of the
display size. With ShowScreen, the window’s Xinerama screen number is displayed.

The MaxLabelWidth option takes the number of characters to print as its argument. No more than
that many characters of the window name are visible.

If you wanted to use the WindowList as an icon manager, you could invoke the following:

WindowList OnlyIcons, Sticky, OnTop, Geometry

(Note - the Only options essentially wipe out all other ones... but the OnlyListSkip option which
just causes WindowList to only consider the windows with WindowListSkip style.)

XSync
When XSync is called, the X function with the same name is used to send all pending X requests
to the server. This command is intended for debugging only.

XSynchronize [bool]
The XSynchronize command controls whether X requests are sent to the X server immediately or
not. Normally, requests are sent in larger batches to save unnecessary communication. To send
requests immediately, use "True" as the argument, to disable this use "False" or to toggle between
both methods use "Toggle" or omit the bool argument. Fvwm defaults to synchronized requests
when started with the --debug option. This command is intended for debugging only.

+
Used to continue adding to the last specified decor, function or menu. See the discussion for
AddToDecor, AddToFunc, and AddToMenu.

Window Movement and Placement
AnimatedMove x y [Warp]

Move a window in an animated fashion. Similar to Move command. The options are the same,
except they are required, since it doesn’t make sense to have a user move the window interactively
and animatedly. If the optional argument Warp is specified the pointer is warped with the window.

HideGeometryWindow [Never | Move | Resize]
Hides the position or size window that is usually shown when a window is moved or resized
interactively. To switch it off only for move or resize operations the optional parameters Move and
Resize can be used respectively. To switch both on again use the Never option.

Layer [arg1 arg2] | [default]
Puts the current window in a new layer. If arg1 is non zero then the next layer is the current layer
number plus arg1. If arg1 is zero then the new layer is arg2.

As a special case, default puts the window in its default layer, i.e. the layer it was initially in. The
same happens if no or invalid arguments are specified.

Lower
Allows the user to lower a window. Note that this lowers a window only in its layer. To bring a
window to the absolute bottom, use

AddToFunc lower-to-bottom
+ I Layer 0 0
+ I Lower

Move [[screen screen] [w | m]x[p | w] ... [w | m]y[p | w] ... [Warp]] | [pointer] | [ewmhiwa]
Allows the user to move a window. If called from somewhere in a window or its border, then that
window is moved. If called from the root window then the user is allowed to select the target
window. By default, the EWMH working area is honoured.

05-Sep-2019 50

FVWM(1) Fvwm 2.6.9 FVWM(1)

If the literal option screen followed by a screen argument is specified, the coordinates are
interpreted as relative to the given screen. The width and height of the screen are used for the
calculations instead of the display dimensions. The screen as interpreted as in the MoveToScreen
command. If the optional argument Warp is specified the pointer is warped with the window. If
the single argument pointer is given, the top left corner of the window is moved to the pointer
position before starting the operation; this is mainly intended for internal use by modules like
FvwmPager. If the optional argument ewmhiwa is given, then the window position will ignore
the working area (such as ignoring any values set via EwmhBaseStruts).

The operation can be aborted with Escape or any mouse button not set to place the window. By
default mouse button 2 is set to cancel the move operation. To change this you may use the
Mouse command with special context ’P’ for Placement.

The window condition PlacedByButton can be used to check if a specific button was pressed to
place the window (see Current command).

If the optional arguments x and y are provided, then the window is moved immediately without
user interaction. Each argument can specify an absolute or relative position from either the
left/top or right/bottom of the screen. By default, the numeric value given is interpreted as a
percentage of the screen width/height, but a trailing ’p’ changes the interpretation to mean pixels,
while a trailing ’w’ means precent of the window width/height. To move the window relative to its
current position, add the ’w’ (for "window") prefix before the x and/or y value. To move the
window to a position relative to the current location of the pointer, add the ’m’ (for "mouse")
prefix. To leave either coordinate unchanged, "keep" can be specified in place of x or y.

For advanced uses, the arguments x and y can be used multiple times, but without the prefix ’m’ or
’w’. (See complex examples below).

Simple Examples:

Interactive move
Mouse 1 T A Move
Move window to top left is at (10%,10%)
Mouse 2 T A Move 10 10
Move top left to (10pixels,10pixels)
Mouse 3 T A Move 10p 10p

More complex examples (these can be bound as actions to keystrokes, etc.; only the command is
shown, though):

Move window so bottom right is at bottom
right of screen
Move -0 -0

Move window so top left corner is 10 pixels
off the top left screen edge
Move +-10 +-10

Move window 5% to the right, and to the
middle vertically
Move w+5 50

Move window up 10 pixels, and so left edge
is at x=40 pixels
Move 40p w-10p

05-Sep-2019 51

FVWM(1) Fvwm 2.6.9 FVWM(1)

Move window to the mouse pointer location
Move m+0 m+0

Move window to center of screen (50% of screen
poition minus 50% of widow size).
Move 50-50w 50-50w

Note: In order to obtain moving windows which do not snap to screen, with interactive move, hold
down Alt whilst moving the window to disable snap attraction if it’s defined.

See also the AnimatedMove command.

MoveToDesk [prev | arg1 [arg2] [min max]]
Moves the selected window to another desktop. The arguments are the same as for the GotoDesk
command. Without any arguments, the window is moved to the current desk. MoveToDesk is a
replacement for the obsolete WindowsDesk command, which can no longer be used.

MoveThreshold [pixels]
When the user presses a mouse button upon an object fvwm waits to see if the action is a click or a
drag. If the mouse moves by more than pixels pixels it is assumed to be a drag.

Previous versions of fvwm hardwired pixels to 3, which is now the default value. If pixels is
negative or omitted the default value (which might be increased when 16000x9000 pixel displays
become affordable) is restored.

MoveToPage [options] [x[p | w] y[p | w]] | [prev]
Moves the selected window to another page (x,y). The upper left page is (0,0), the upper right is
(M,0), where M is one less than the current number of horizontal pages specified in the
DesktopSize command. Similarly the lower left page is (0,N), and the lower right page is (M,N).
Negative page numbers refer to pages from the rightmost/lowest page. If x and y are not given, the
window is moved to the current page (a window that has the focus but is off-screen can be
retrieved with this). Moving windows to a page relative to the current page can be achieved by
adding a trailing ’p’ after any or both numerical arguments. To move the window relative to its
current location, add a trailing ’w’. To move a window to the previous page use prev as the single
argument.

Windows are usually not moved beyond desk boundaries.

Possible options are wrapx and wrapy to wrap around the x or y coordinate when the window is
moved beyond the border of the desktop. For example, with wrapx, when the window moves past
the right edge of the desktop, it reappears on the left edge. The options nodesklimitx and
nodesklimity allow moving windows beyond the desk boundaries in x and y direction (disabling
the wrapx and wrapy options).

Examples:

Move window to page (2,3)
MoveToPage 2 3

Move window to lowest and rightmost page
MoveToPage -1 -1

Move window to last page visited
MoveToPage prev

Move window two pages to the right and one
page up, wrap at desk boundaries
MoveToPage wrapx wrapy +2p -1p

05-Sep-2019 52

FVWM(1) Fvwm 2.6.9 FVWM(1)

MoveToScreen [screen]
Moves the selected window to another Xinerama screen. The screen argument can be ’p’ for the
primary screen, ’c’ for the current screen (containing the mouse pointer), ’w’ for the screen
containing the center of +the context window, ’g’ for the global screen or the screen number itself
(counting from zero).

OpaqueMoveSize [percentage]
Tells fvwm the maximum size window with which opaque window movement should be used.
The percentage is percent of the total screen area (may be greater than 100). With

OpaqueMoveSize 0

all windows are moved using the traditional rubber-band outline. With

OpaqueMoveSize unlimited

or if a negative percentage is given all windows are moved as solid windows. The default is

OpaqueMoveSize 5

which allows small windows to be moved in an opaque manner but large windows are moved as
rubber-bands. If percentage is omitted or invalid the default value is set. To resize windows in an
opaque manner you can use the ResizeOpaque style. See the Style command.

PlaceAgain [Anim] [Icon]
Causes the current window’s position to be re-computed using the initial window placement logic.
The window is moved to where it would have been if it were a new window that had just appeared.
Most useful with Smart or Clever (ReallySmart) placement. With the optional argument Anim an
animated move is used to place the window in its new position. With the additional option Icon,
the icon is placed again instead.

Raise
Allows the user to raise a window. Note that this raises a window only in its layer. To bring a
window to the absolute top, use

AddToFunc raise-to-top
+ I Layer 0 ontop
+ I Raise

where ontop is the highest layer used in your setup.

RaiseLower
Alternately raises and lowers a window. The window is raised if it is obscured by any window
(except for its own transients when RaiseTransient style is used; see the Style command)
otherwise it is lowered.

Resize [[frame] [direction dir] [warptoborder automatic] [fixeddirection] [w]width[p | c | wa | da]
[w]height[p | c]]

Allows for resizing a window. If called from somewhere in a window or its border, then that
window is resized. If called from the root window then the user is allowed to select the target
window.

The operation can be aborted with Escape or by pressing any mouse button (except button 1 which
confirms it).

If the optional arguments width and height are provided, then the window is resized so that its
dimensions are width by height. The units of width and height are percent-of-screen, unless a
letter ’p’ is appended to one or both coordinates, in which case the location is specified in pixels.
With a ’c’ suffix the unit defined by the client application (hence the c) is used. With the suffix
’wa’ the value is a percentage of the width or height size of the EWMH working area, and with the
suffix ’da’ it is a percentage of the width or height of the EWMH dynamic working area. So you

05-Sep-2019 53

FVWM(1) Fvwm 2.6.9 FVWM(1)

can say

Resize 80c 24c

to make a terminal window just big enough for 80x24 characters.

If the width or height is prefixed with the letter ’w’ the size is not taken as an absolute value but
added to the current size of the window. Example:

Enlarge window by one line
Resize keep w+1c

Both, width and height can be negative. In this case the new size is the screen size minus the given
value. If either value is "keep", the corresponding dimension of the window is left untouched.
The new size is the size of the client window, thus

Resize 100 100

may make the window bigger than the screen. To base the new size on the size of the whole fvwm
window, add the frame option after the command. The options fixeddirection, direction and
warptoborder are only used in interactive move operations. With fixeddirection the same border is
moved even if the pointer moves past the opposite border. The direction option must be followed
by a direction name such as "NorthWest", "South" or "East" (you get the idea). Resizing is started
immediately, even if the pointer is not on a border. If the special option automatic is given as a
direction argument, then the direction to resize is calculated based on the position of the pointer in
the window. If the pointer is in the middle of the window, then no direction is calculated. The
warptoborder option can be used to warp the pointer to the direction indicated. As with the
automatic option for direction, the border to warp to is calculated based on the pointer’s proximity
to a given border. Also, if resizing is started by clicking on the window border, the pointer is
warped to the outer edge of the border.

AddToFunc ResizeSE I Resize Direction SE
Mouse 3 A M ResizeSE

Resize [bottomright | br x y]
An alternate syntax is used if the keyword bottomright or in short br follows the command name.
In this case, the arguments x and y specify the desired position of the bottom right corner of the
window. They are interpreted exactly like the x and y arguments of the Move command. Actually,
any of the options accepted by the Move command can be used.

ResizeMaximize [resize-arguments]
Combines the effects of Resize and Maximize in a single command. When used on a maximized
window, the window is resized and is still in the maximized state afterwards. When used on an
unmaximized window, the window is resized and put into the maximized state afterwards. This is
useful if the user wants to resize the window temporarily and then return to the original geometry.
The resize-arguments are the same as for the Resize command.

ResizeMove resize-arguments move-arguments
This command does the same as the Resize and Move commands, but in a single call which is less
visually disturbing. The resize-arguments are exactly the same arguments as for the Resize
command and the move-arguments are exactly the same arguments as for the Move command
except the pointer option which is not supported by the ResizeMove command.

Examples:

Move window to top left corner and cover
most of the screen
ResizeMove -10p -20p 0 0

05-Sep-2019 54

FVWM(1) Fvwm 2.6.9 FVWM(1)

Grow the focused window towards the top of screen
Current Resize keep w+$[w.y]p keep 0

Note: Fvwm may not be able to parse the command properly if the option bottomright of the
Resize command is used.

ResizeMoveMaximize resize-arguments move-arguments
Combines the effects of ResizeMove and Maximize in a single command. When used on a
maximized window, the window is resized and moved and is still in the maximized state
afterwards. When used on an unmaximized window, the window is resized and put into the
maximized state afterwards. This is useful if the user wants to resize the window temporarily and
then return to the original geometry. The resize-arguments and move-arguments are the same as
for the ResizeMove command.

RestackTransients
This command regroups the transients of a window close to it in the stacking order as if the
window had just been lowered and then raised. The position of the window itself is not altered.
Only windows that use either the RaiseTransient or LowerTransient style are affected at all. When
RestackTransients is used on a transient window with the StackTransientParent style set, it is
redirected to the parent window.

SetAnimation milliseconds-delay [fractions-to-move-list]
Sets the time between frames and the list of fractional offsets to customize the animated moves of
the AnimatedMove command and the animation of menus (if the menu style is set to animated;
see MenuStyle command). If the fractions-to-move-list is omitted, only the time between
frames is altered. The fractions-to-move-list specifies how far the window should be offset at
each successive frame as a fraction of the difference between the starting location and the ending
location. e.g.:

SetAnimation 10 -.01 0 .01 .03 .08 .18 .3 \
.45 .6 .75 .85 .90 .94 .97 .99 1.0

Sets the delay between frames to 10 milliseconds, and sets the positions of the 16 frames of the
animation motion. Negative values are allowed, and in particular can be used to make the motion
appear more cartoonish, by briefly moving slightly in the opposite direction of the main motion.
The above settings are the default.

SnapAttraction [proximity [behaviour] [Screen]]
The SnapAttraction command is obsolete. It has been replaced by the Style command option
SnapAttraction.

SnapGrid [x-grid-size y-grid-size]
The SnapGrid command is obsolete. It has been replaced by the Style command option
SnapGrid.

WindowsDesk arg1 [arg2]
Moves the selected window to another desktop.

This command has been removed and must be replaced by MoveToDesk, the arguments for which
are the same as for the GotoDesk command.

Important
You cannot simply change the name of the command: the syntax has changed. If you used:

WindowsDesk n

to move a window to desk n, you have to change it to:

MoveToDesk 0 n

05-Sep-2019 55

FVWM(1) Fvwm 2.6.9 FVWM(1)

XorPixmap [pixmap]
Selects the pixmap with which bits are xor’ed when doing rubber-band window moving or
resizing. This has a better chance of making the rubber-band visible if XorValue does not give
good results. An example pixmap resize.rainbow.xpm is provided with the icon distribution. To
turn the XorPixmap off again use the XorValue command or omit the pixmap argument.

XorValue [number]
Changes the value with which bits are xor’ed when doing rubber-band window moving or
resizing. Valid values range from zero to the maximum value of an unsigned long integer on your
system. Setting this value is a trial-and-error process. The default value 0 tries to find a value
that gives a good contrast to black and white. The default value is used if the given number is
omitted or invalid.

Focus & Mouse Movement
CursorMove horizontal[p] vertical[p]

Moves the mouse pointer by horizontal pages in the X direction and vertical pages in the Y
direction. Either or both entries may be negative. Both horizontal and vertical values are
expressed in percent of pages, so

CursorMove 100 100

means to move down and right by one full page.

CursorMove 50 25

means to move right half a page and down a quarter of a page. Alternatively, the distance can be
specified in pixels by appending a ’p’ to the horizontal and/or vertical specification. For example

CursorMove -10p -10p

means move ten pixels up and ten pixels left. The CursorMove function should not be called from
pop-up menus.

FlipFocus [NoWarp]
Executes a Focus command as if the user had used the pointer to select the window. This
command alters the order of the WindowList in the same way as clicking in a window to focus, i.e.
the target window is removed from the WindowList and placed at the start. This command is
recommended for use with the Direction command and in the function invoked from
WindowList.

Focus [NoWarp]
Sets the keyboard focus to the selected window. If the NoWarp argument is given, this is all it
does. Otherwise it also moves the viewport or window as needed to make the selected window
visible. This command does not automatically raise the window. Does not warp the pointer into
the selected window (see WarpToWindow function). Does not de-iconify. This command does
not alter the order of the WindowList, it rotates the WindowList around so that the target window
is at the start.

When the NoWarp argument is given, Focus cannot transfer the keyboard focus to windows on
other desks.

To raise and/or warp a pointer to a window together with Focus or FlipFocus, use a function, like:

AddToFunc SelectWindow
+ I Focus
+ I Iconify false
+ I Raise
+ I WarpToWindow 50 8p

05-Sep-2019 56

FVWM(1) Fvwm 2.6.9 FVWM(1)

WarpToWindow [!raise | raise] x[p] y[p]
Warps the cursor to the associated window and raises it (unless the option !raise is present). The
parameters x and y default to percentage of window down and in from the upper left hand corner
(or number of pixels down and in if ’p’ is appended to the numbers). If a number is negative the
opposite edge is used and the direction reversed. This command works also with windows that are
not managed by fvwm. In this case fvwm does not bring the window onto the screen if it is not
visible. For example it is possible to warp the pointer to the center of the root window on screen
1:

WindowId root 1 WarpToWindow 50 50

Window State
Close

If the window accepts the delete window protocol a message is sent to the window asking it to
gracefully remove itself. If the window does not understand the delete window protocol then the
window is destroyed as with the Destroy command. Note: if the window accepts the delete
window protocol but does not close itself in response, the window is not deleted.

Delete
Sends a message to a window asking that it remove itself, frequently causing the application to
exit.

Destroy
Destroys an application window, which usually causes the application to crash and burn.

Iconify [bool]
Iconifies a window if it is not already iconified or de-iconifies it if it is already iconified. The
optional argument bool is a boolean argument. "True" means only iconification is allowed, while
"False" forces de-iconification. Using "toggle" switches between iconified and de-iconified
states.

There are a number of Style options which influence the appearance and behavior of icons (e.g.
StickyIcon, NoIcon).

For backward compatibility, the optional argument may also be a positive number instead of
"True", or a negative number instead of "False". Note that this syntax is obsolete, and will be
removed in the future.

Maximize [flags] [bool | forget] [horizontal[p]] [vertical[p]]
Without its optional arguments (or if the bool bit has the value "toggle") Maximize causes the
window to alternately switch from a full-screen size to its normal size. To force a window into
maximized (normal) state you can use a "True" or "False" value for the bool argument.

With just the parameter "forget" a maximized window reverts back into normal state but keeps its
current maximized size. This can be useful in conjunction with the commands ResizeMaximize
and ResizeMoveMaximize. If the window is not maximized, nothing happens.

With the optional arguments horizontal and vertical, which are expressed as percentage of a full
screen, the user can control the new size of the window. An optional suffix ’p’ can be used to
indicate pixels instead of percents of the screen size. If horizontal is greater than 0 then the
horizontal dimension of the window is set to horizontal*screen_width/100. If the value is smaller
than 0 the size is subtracted from the screen width, i.e. -25 is the same as 75. If horizontal is
"grow", it is maximized to curren available space until finding any obstacle. The vertical resizing
is similar. If both horizontal and vertical values are "grow", it expands vertically first, then
horizontally to find space. Instead of the horizontal "grow" argument, "growleft" or "growright"
can be used respectively "growup" and "growdown". The optional flags argument is a space
separated list containing the following key words: fullscreen, ewmhiwa, growonwindowlayer,
growonlayers and screen. fullscreen causes the window to become fullscreened if the appropriate
EWMH hint is set. ewmhiwa causes fvwm to ignore the EWMH working area.
growonwindowlayer causes the various grow methods to ignore windows with a layer other than

05-Sep-2019 57

FVWM(1) Fvwm 2.6.9 FVWM(1)

the current layer of the window which is maximized. The growonlayers option must have two
integer arguments. The first one is the minimum layer and the second one the maximum layer to
use. Windows that are outside of this range of layers are ignored by the grow methods. A
negative value as the first or second argument means to assume no minimum or maximum layer.
screen must have an argument which specifies the Xinerama screen on which to operate. It can be
’p’ for the primary screen, ’c’ for the current screen (containing the mouse pointer), ’g’ for the
global screen or the screen number itself (counting from zero). This option is only useful with
multiple Xinerama screens.

Here are some examples. The following adds a title-bar button to switch a window to the full
vertical size of the screen:

Mouse 0 4 A Maximize 0 100

The following causes windows to be stretched to the full width:

Mouse 0 4 A Maximize 100 0

This makes a window that is half the screen size in each direction:

Mouse 0 4 A Maximize 50 50

To expand a window horizontally until any other window is found:

Mouse 0 4 A Maximize 0 grow

To expand a window until any other window on the same or a higher layer is hit.

Mouse 0 4 A Maximize growonlayers $[w.layer] -1 grow grow

To expand a window but leave the lower 60 pixels of the screen unoccupied:

Mouse 0 4 A Maximize 100 -60p

Values larger than 100 can be used with caution.

Recapture
This command is obsolete and should not be used anymore. Should you want to do something
specific that you cannot do without it, please report this to the fvwm-workers mailing list
<fvwm-workers@fvwm.org>. This command may be removed at some point in the future.
Please read the note at the end of the section Delayed Execution of Commands to learn about
how to avoid the Recapture command.

Causes fvwm to recapture all of its windows. This ensures that the latest style parameters are
used. The recapture operation is visually disturbing.

Since fvwm version 2.4 only a very few Style options need a Recapture to take effect (e.g.
UseStyle).

RecaptureWindow
This command is obsolete and should not be used anymore. See Recapture For details.

Causes fvwm to recapture the chosen window.

Refresh
Causes all windows on the screen to redraw themselves. All pending updates of all windows’
styles and looks are applied immediately. E.g. if Style or TitleStyle commands were issued inside
a fvwm function.

RefreshWindow
Causes the chosen window to redraw itself. All pending updates of the window’s style and look
are applied immediately. E.g. if Style or TitleStyle commands were issued inside a fvwm
function.

05-Sep-2019 58

FVWM(1) Fvwm 2.6.9 FVWM(1)

Stick [bool]
If the bool argument is empty or "toggle", the Stick command makes a window sticky if it is not
already sticky, or non-sticky if it is already sticky. To make a window sticky regardless of its
current state the bool argument must be "True". To make it non-sticky use "False".

StickAcrossPages [bool]
Works like Stick but only sticks a window across pages, not across desks.

StickAcrossDesks [bool]
Works like Stick but only sticks a window across desks, not across pages.

WindowShade [bool] | [[ShadeAgain] direction]
Toggles the window shade feature for titled windows. Windows in the shaded state only display a
title-bar. If bool is not given or "toggle", the window shade state is toggled. If bool is "True", the
window is forced to the shaded state. If bool is "False", then the window is forced to the
non-shaded state. To force shading in a certain direction, the direction argument can be used.
Any of the strings "North", "South", "West", "East", "NorthWest", "NorthEast", "SouthWest",
"SouthEast" or "Last" can be given. The direction can be abbreviated with the usual one or two
letters "N", "NW", etc. Using a direction on a window that was already shaded unshades the
window. To shade it in a different direction, use the ShadeAgain option. The direction Last
shades the window in the direction it last was shaded. If the window has never been shaded before
it is shaded as if no direction had been given. Windows without titles can be shaded too. Please
refer also to the options WindowShadeSteps, WindowShadeShrinks, WindowShadeScrolls,
WindowShadeLazy, WindowShadeAlwaysLazy and WindowShadeBusy options of the Style
command. Examples:

Style * WindowShadeShrinks, WindowShadeSteps 20, \
WindowShadeLazy

Mouse 1 - S WindowShade North
Mouse 1 [S WindowShade West
Mouse 1] S WindowShade E
Mouse 1 _ S WindowShade S

Note: When a window that has been shaded with a direction argument changes the direction of the
window title (see TitleAtTop Style option), the shading direction does not change. This may look
very strange. Windows that were shaded without a direction argument stay shaded in the direction
of the title bar.

For backward compatibility, the optional argument may also be 1 to signify "on", and 2 to signify
"off". Note that this syntax is obsolete, and will be removed in the future.

WindowShadeAnimate [steps [p]]
This command is obsolete. Please use the WindowShadeSteps option of the Style command
instead.

Mouse, Key & Stroke Bindings
IgnoreModifiers [Modifiers]

Tells fvwm which modifiers to ignore when matching Mouse or Key bindings. IgnoreModifiers
affects the ClickToFocus style too. This command belongs into your config. If you issue it when
your fvwm session is already up and running the results are unpredictable. The should appear
before any applications or modules are started in your config file (e.g. with the Exec command).

Modifiers has the same syntax as in the Mouse or Key bindings, with the addition of ’L’ meaning
the caps lock key. The default is "L". Modifiers can be omitted, meaning no modifiers are ignored.
This command comes in handy if the num-lock and scroll-lock keys interfere with your shortcuts.
With XFree86 ’2’ usually is the num-lock modifier and ’5’ refers to the scroll-lock key. To turn all
these pesky modifiers off you can use this command:

IgnoreModifiers L25

05-Sep-2019 59

FVWM(1) Fvwm 2.6.9 FVWM(1)

If the Modifiers argument is the string "default", fvwm reverts back to the default value "L".

Important
This command creates a lot of extra network traffic, depending on your CPU, network connection,
the number of Key or Mouse commands in your configuration file and the number of modifiers
you want to ignore. If you do not have a lightning fast machine or very few bindings you should
not ignore more than two modifiers. I.e. do not ignore scroll-lock if you have no problem with it.
In the FAQ you can find a better solution of this problem.

EdgeCommand [direction [Function]]
Binds a specified fvwm command Function to an edge of the screen. Direction may be one of
"North", "Top", "West", "Left", "South", "Bottom", "Right" and "East". If Function is omitted the
binding for this edge is removed. If EdgeCommand is called without any arguments all edge
bindings are removed.

Function is executed when the mouse pointer enters the invisible pan frames that surround the
visible screen. The binding works only if EdgeThickness is set to a value greater than 0. If a
function is bound to an edge, scrolling specified by EdgeScroll is disabled for this edge. It is
possible to bind a function only to some edges and use the other edges for scrolling. This
command is intended to raise or lower certain windows when the mouse pointer enters an edge.
FvwmAuto can be used get a delay when raising or lowering windows. The following example
raises FvwmButtons if the mouse pointer enters the top edge of the screen.

Disable EdgeScrolling but make it possible
to move windows over the screen edge
EdgeResistance -1
Style * EdgeMoveDelay 250
Style * EdgeMoveResistance 20

Set thickness of the edge of the screen to 1
EdgeThickness 1

Give focus to FvwmButtons if the mouse
hits top edge
EdgeCommand Top Next (FvwmButtons) Focus
Make sure the Next command matches the window
Style FvwmButtons CirculateHit

Module FvwmButtons
Module FvwmAuto 100 "Silent AutoRaiseFunction" \

"Silent AutoLowerFunction"

If any window except FvwmButtons has
focus when calling this function
FvwmButtons are lowered
DestroyFunc AutoLowerFunction
AddToFunc AutoLowerFunction
+ I Current (!FvwmButtons) All (FvwmButtons) Lower

If FvwmButtons has focus when calling this function raise it
DestroyFunc AutoRaiseFunction
AddToFunc AutoRaiseFunction
+ I Current (FvwmButtons) Raise

Normally, the invisible pan frames are only on the screen edges that border virtual pages. If a
screen edge has a command bound to it, the pan frame is always created on that edge.

05-Sep-2019 60

FVWM(1) Fvwm 2.6.9 FVWM(1)

EdgeLeaveCommand [direction [Function]]
Binds a specified fvwm command Function to an edge of the screen. Direction may be one of
"North", "Top", "West", "Left", "South", "Bottom", "Right" and "East". If Function is omitted the
binding for this edge is removed. If EdgeLeaveCommand is called without any arguments all edge
bindings are removed.

Function is executed when the mouse pointer leaves the invisible pan frames that surround the
visible screen. The binding works only if EdgeThickness is set to a value greater than 0. If a
function is bound to an edge, scrolling specified by EdgeScroll is disabled for this edge. It is
possible to bind a function only to some edges and use the other edges for scrolling. This
command is intended to raise or lower certain windows when the mouse pointer leaves an edge.
FvwmAuto can be used get a delay when raising or lowering windows. See example for
EdgeCommand

Normally, the invisible pan frames are only on the screen edges that border virtual pages. If a
screen edge has a command bound to it, the pan frame is always created on that edge.

Key [(window)] Keyname Context Modifiers Function
Binds a keyboard key to a specified fvwm command, or removes the binding if Function is ’-’.
The syntax is the same as for a Mouse binding except that the mouse button number is replaced
with a Keyname. Normally, the key binding is activated when the key is pressed. Keyname is a
standard X11 key name as defined in /usr/include/X11/keysymdef.h, (without the XK_ prefix), or
the keysym database /usr/X11R6/lib/X11/XKeysymDB. Only key names that are generated with no
modifier keys or with just the Shift key held are guaranteed to work. The Context and Modifiers
fields are defined as in the Mouse binding. However, when you press a key the context window is
the window that has the keyboard focus. That is not necessarily the same as the window the
pointer is over (with SloppyFocus or ClickToFocus). Note that key bindings with the ’R’ (root
window) context do not work properly with SloppyFocus and ClickToFocus. If you encounter
problems, use the PointerKey command instead. If you want to bind keys to a window with
SloppyFocus or ClickToFocus that are supposed to work when the pointer is not over the window,
fvwm assumes the pointer is over the client window (i.e. you have to use the ’W’ context).

The special context ’M’ for menus can be used to (re)define the menu controls. It be used alone or
together with ’T’, ’S’, ’I’, ’[’, ’]’, ’-’ and ’_’. See the Menu Bindings section for details.

The following example binds the built-in window list to pop up when Alt-Ctrl-Shift-F11 is hit, no
matter where the mouse pointer is:

Key F11 A SCM WindowList

Binding a key to a title-bar button causes that button to appear. Please refer to the Mouse
command for details.

Mouse [(window)] Button Context Modifiers Function
Defines a mouse binding, or removes the binding if Function is ’-’. Button is the mouse button
number. If Button is zero then any button performs the specified function. Note that only mouse
buttons 1 to 5 are fully supported by X11. Any number above this works only partially. Complex
functions can not be used with these buttons and neither any operation that requires dragging the
pointer with the button held. This is due to limitations of X11. By default, the highest allowed
button number is 9.

Context describes where the binding applies. Valid contexts are ’R’ for the root window, ’W’ for
an application window, ’D’ for a desktop application (as kdesktop or Nautilus desktop), ’T’ for a
window title-bar, ’S’ for a window side, top, or bottom bar, ’[’, ’]’, ’-’ and ’_’ for the left, right,
top or bottom side only, ’F’ for a window frame (the corners), ’<’, ’ˆ’, ’>’ and ’v’ for the top left,
top right, bottom right or bottom left corner, ’I’ for an icon window, or ’0’ through ’9’ for title-bar
buttons, or any combination of these letters. ’A’ is for any context. For instance, a context of
"FST" applies when the mouse is anywhere in a window’s border except the title-bar buttons.
Only ’S’ and ’W’ are valid for an undecorated window.

05-Sep-2019 61

FVWM(1) Fvwm 2.6.9 FVWM(1)

The special context ’M’ for menus can be used to (re)define the menu controls. It can be used
alone or together with ’T’, ’S’, ’I’, ’[’, ’]’, ’-’ and ’_’. See the Menu Bindings section for details.

The special context ’P’ controls what buttons that can be used to place a window. When using this
context no modifiers are allowed (Modifiers must be N), no window is allowed, and the Function
must be one of PlaceWindow, PlaceWindowDrag, PlaceWindowInteractive, CancelPlacement,
CancelPlacementDrag, CancelPlacementInteractive or -.

PlaceWindow makes Button usable for window placement, both for interactive and drag move.
CancelPlacement does the inverse. That is makes Button to cancel move for both interactive and
drag move. It may however not override how new windows are resized after being placed. This is
controlled by the Emulate command. Also a window being dragged can always be placed by
releasing the button hold while dragging, regardless of if it is set to PlaceWindow or not.

PlaceWindowDrag and PlaceWindowInteractive/CancelPlacementDrag and
CancelPlacementInteractive work as PlaceWindow/CancelPlacement with the exception that they
only affect either windows dragged / placed interactively.

- is equivalent to CancelPlacement.

The following example makes all buttons but button 3 usable for interactive placement and makes
drag moves started by other buttons than one cancel if button 1 is pressed before finishing the
move:

Mouse 0 P N PlaceWindow
Mouse 3 P N CancelPlacement
Mouse 1 P N CancelPlacementDrag

By default, the binding applies to all windows. You can specify that a binding only applies to
specific windows by specifying the window name in brackets. The window name is a wildcard
pattern specifying the class, resource or name of the window you want the binding to apply to.

The following example shows how the same key-binding can be used to perform different
functions depending on the window that is focused:

Key (rxvt) V A C Echo ctrl-V-in-RXVT
Key (*term) V A C Echo ctrl-V-in-Term
Key (*vim) V A C --
Key V A C Echo ctrl-V-elsewhere

A ’--’ action indicates that the event should be propagated to the specified window to handle. This
is only a valid action for window-specific bindings.

This example shows how to display the WindowList when Button 3 is pressed on an rxvt window:

Mouse (rxvt) 3 A A WindowList

Note that Fvwm actually intercepts all events for a window-specific binding and (if the focused
window doesn’t match any of the bindings) sends a synthetic copy of the event to the window.
This should be transparent to most applications, however (for security reasons) some programs
ignore these synthetic events by default - xterm is one of them. To enable handling of these
events, add the following line to your ˜/.Xdefaults file:

XTerm*allowSendEvents: true

Modifiers is any combination of ’N’ for no modifiers, ’C’ for control, ’S’ for shift, ’M’ for Meta,
’L’ for Caps-Lock or ’A’ for any modifier. For example, a modifier of "SM" applies when both
the Meta and Shift keys are down. X11 modifiers mod1 through mod5 are represented as the digits
’1’ through ’5’. The modifier ’L’ is ignored by default. To turn it on, use the IgnoreModifiers
command.

Function is one of fvwm’s commands.

05-Sep-2019 62

FVWM(1) Fvwm 2.6.9 FVWM(1)

The title-bar buttons are numbered with odd numbered buttons on the left side of the title-bar and
even numbers on the right. Smaller-numbered buttons are displayed toward the outside of the
window while larger-numbered buttons appear toward the middle of the window (0 is short for
10). In summary, the buttons are numbered:

1 3 5 7 9 0 8 6 4 2

The highest odd numbered button which has an action bound to it determines the number of
buttons drawn on the left side of the title bar. The highest even number determines the number of
right side buttons which are drawn. Actions can be bound to either mouse buttons or keyboard
keys.

PointerKey [(window)] Keyname Context Modifiers Function
This command works exactly like the Key command. The only difference is that the binding
operates on the window under the pointer. Normal key bindings operate on the focused window
instead. The PointerKey command can for example be used to bind keys to the root window if
you are using SloppyFocus or ClickToFocus. However, some applications (xterm is one example)
are unable to handle this key anymore, even if the pointer is over the xterm window. It is
recommended to use the PointerKey command only for key combinations that are not needed in
any application window.

Example:

Style * SloppyFocus
PointerKey f1 a m Menu MainMenu

Stroke [(window)] Sequence Button Context Modifiers Function
Binds a mouse stroke sequence to a specified fvwm command, or removes the binding if Function
is ’-’. The syntax is the same as for a Mouse binding except that Sequence is inserted in front of
the button number and a value of 0 for Button concerns the StrokeFunc command. The Context
and Modifiers fields are defined as in the Mouse binding. However, only the ’R’ Context really
works (if you want to use other contexts you need to use the StrokeFunc below).

Strokes sequences are defined in a telephone grid like this:

1 2 3

4 5 6

7 8 9

or in a numeric pad grid like this:

7 8 9

4 5 6

1 2 3

The telephone grid is used by default, to use the numeric pad grid you should begin the sequence
with a ’N’. Note that a complex motion may produce several different sequences (see the
"netscape" example below to handle such motion). Moreover, sequences are limited to 20
elements (with the present version of libstroke), however, in practice it is preferable to use
sequence with less than 12 elements.

Because of the default button menu in fvwm, you may need to remove a mouse button binding
(using an empty action) before using the stroke

Mouse 3 R N

05-Sep-2019 63

FVWM(1) Fvwm 2.6.9 FVWM(1)

Also, you can still use the stroke "sequence 0" to simulate a click:

Stroke 0 3 R N Menu WindowList Nop

The following example starts xterm when the mouse drags an ’I’ on the root window with button 3
pressed down:

Stroke 258 3 R N Exec exec xterm

An example for Netscape:

Stroke 7415963 3 R N Exec exec netscape
Stroke 74148963 3 R N Exec exec netscape
Stroke 74158963 3 R N Exec exec netscape
Stroke 7418963 3 R N Exec exec netscape
Stroke 415963 3 R N Exec exec netscape

You may prefer to use the numeric pad grid since you have such a grid on your machine. Here an
example:

Stroke N78963214 3 R N FvwmForm FvwmForm-QuitVerify
Stroke N789632147 3 R N FvwmForm FvwmForm-QuitVerify

This example starts the "QuitVerify" form if you draw a box that begins in the top left corner.

Note: You need libstroke installed and fvwm compiled with stroke support. libstroke can be
obtained at http://www.etla.net/˜willey/projects/libstroke/

StrokeFunc [Options]
Causes fvwm to record a mouse stroke sequence and to execute the corresponding action as
defined in a Stroke command. The cursor is modified to the STROKE context of the CursorStyle
command during recording. When the stroke is finished StrokeFunc looks for a stroke binding of
the form

Stroke sequence 0 Context Modifiers action

and executes the corresponding action (Note the 0). Normal use of this function is via a Mouse or
Key command. Examples:

Mouse 3 A M StrokeFunc
Key x R N StrokeFunc

If you press mouse button 3 and Alt anywhere (respectively, press the key x when the cursor is on
the root window), then fvwm records the mouse motions until the mouse button 3 (respectively,
the x key) is released and then check if the recorded sequence corresponds to a stroke binding of
the form

"Stroke sequence 0 A M action"
"Stroke sequence 0 R N action"

Note that the Context and Modifiers are taken at the beginning of the execution of the StrokeFunc
command (so you can release the modifiers before the end of the stroke recording in the case of a
mouse binding and if you used, say, a title-bar context the mouse motion can go through an
application window). The keys Escape and Delete allow you to abort the command.

The StrokeFunc command has five options: NotStayPressed, EchoSequence, DrawMotion,
FeedBack and StrokeWidth. These options are disabled by default. EchoSequence causes fvwm to
Echo the recorded stroke sequence. DrawMotion causes fvwm to draw the mouse motion on the
screen. FeedBack causes fvwm to display during a fraction of second the cursor of the WAIT
context of the CursorStyle command if the recorded stroke sequence corresponds to a stroke

05-Sep-2019 64

FVWM(1) Fvwm 2.6.9 FVWM(1)

binding. StrokeWidth takes an integer argument, which must be >= 0 and <= 100 and which
defines the width of the line for the DrawMotion option.

NotStayPressed works only if StrokeFunc is used via a Mouse or a Key command. This option
removes the need to have a button or the key pressed during the stroke, but you have to do a mouse
click or press the Return or Space key to finish the mouse motion recording (these keys also work
without the NotStayPressed option).

You can use the StrokeFunc "alone". In this case it works as above with the NotStayPressed
option enabled. However, Modifiers, in general, may not work as expected (i.e., in this case use
’A’ or ’N’ as Modifiers in the stroke bindings).

Note that some computers do not support key release events. If that is the case the StrokeFunc
used via a Key command works as if the NotStayPressed option is enabled.

Controlling Window Styles
For readability, the commands in this section are not sorted alphabetically. The description of the Style
command can be found at the end of this section.

FocusStyle stylename options
works exactly like the Style command, but accepts only the focus policy related styles beginning
with "FP". The prefix can be removed, but at the cost of a little bit of time. FocusStyle is meant
to make the configuration file more readable. Example:

FocusStyle * EnterToFocus, !LeaveToUnfocus

is equivalent to

Style * FPEnterToFocus, !FPLeaveToUnfocus

DestroyStyle style
deletes the style named style. The changes take effect immediately. Note that style is not a
wild-carded search string, but rather a case-sensitive string that should exactly match the original
Style command.

Destroying style "*" can be done, but isn’t really to be recommended. For example:

DestroyStyle Application*

This removes all settings for the style named "Application*", NOT all styles starting with
"Application".

DestroyWindowStyle
deletes the styles set by the WindowStyle command on the selected window. The changes take
effect immediately.

UpdateStyles
All pending updates of all windows’ styles and looks are applied immediately. E.g. if Style,
WindowStyle or TitleStyle commands were issued inside a fvwm function.

Style stylename options ...
The Style command is used to set attributes of a window to values other than the default or to set
the window manager default styles.

stylename can be a window’s name, class, visible name, or resource string. It may contain the
wildcards ’*’ and ’?’, which are matched in the usual Unix filename manner. Multiple style
options in a single Style command are read from left to right as if they were issued one after each
other in separate commands. A given style always overrides all conflicting styles that have been
issued earlier (or further left on the same style line).

Note: windows that have no name (WM_NAME) are given a name of "Untitled", and windows
that do not have a class (WM_CLASS, res_class) are given class "NoClass" and those that do not
have a resource (WM_CLASS, res_name) are given resource "NoResource".

05-Sep-2019 65

FVWM(1) Fvwm 2.6.9 FVWM(1)

If a window has the resource "fvwmstyle" set, the value of that resource is used in addition to any
window names when selecting the style.

options is a comma separated list containing one or more of the following keywords. Each group
of style names is separated by slashes (’/’). The last style in these groups is the default.
BorderWidth, HandleWidth, !Icon / Icon, MiniIcon, IconBox, IconGrid, IconFill, IconSize, !Title /
Title, TitleAtBottom / TitleAtLeft / TitleAtRight / TitleAtTop, LeftTitleRotatedCW /
LeftTitleRotatedCCW, RightTitleRotatedCCW / RightTitleRotatedCW, TopTitleRotated /
TopTitleNotRotated, BottomTitleRotated / BottomTitleNotRotated, !UseTitleDecorRotation /
UseTitleDecorRotation, StippledTitle / !StippledTitle, StippledIconTitle / !StippledIconTitle,
IndexedWindowName / ExactWindowName, IndexedIconName / ExactIconName, TitleFormat /
IconTitleFormat / !Borders / Borders, !Handles / Handles, WindowListSkip / WindowListHit,
CirculateSkip / CirculateHit, CirculateSkipShaded / CirculateHitShaded, CirculateSkipIcon /
CirculateHitIcon, Layer, StaysOnTop / StaysOnBottom / StaysPut, Sticky / Slippery,
StickyAcrossPages / !StickyAcrossPages, StickyAcrossDesks / !StickyAcrossDesks,
!StickyStippledTitle / StickyStippledTitle, !StickyStippledIconTitle / StickyStippledIconTitle,
StartIconic / StartNormal, Color, ForeColor, BackColor, Colorset, HilightFore, HilightBack,
HilightColorset, BorderColorset, HilightBorderColorset, IconTitleColorset,
HilightIconTitleColorset, IconBackgroundColorset, IconTitleRelief, IconBackgroundRelief,
IconBackgroundPadding, Font, IconFont, StartsOnDesk / StartsOnPage / StartsAnyWhere,
StartsOnScreen, StartShaded / !StartShaded, ManualPlacementHonorsStartsOnPage /
ManualPlacementIgnoresStartsOnPage, CaptureHonorsStartsOnPage /
CaptureIgnoresStartsOnPage, RecaptureHonorsStartsOnPage / RecaptureIgnoresStartsOnPage,
StartsOnPageIncludesTransients / StartsOnPageIgnoresTransients, IconTitle / !IconTitle,
MwmButtons / FvwmButtons, MwmBorder / FvwmBorder, MwmDecor / !MwmDecor,
MwmFunctions / !MwmFunctions, HintOverride / !HintOverride, !Button / Button,
ResizeHintOverride / !ResizeHintOverride, OLDecor / !OLDecor, GNOMEUseHints /
GNOMEIgnoreHints, StickyIcon / SlipperyIcon, StickyAcrossPagesIcon / !StickyAcrossPagesIcon,
StickyAcrossDesksIcon / !StickyAcrossDesksIcon, ManualPlacement / CascadePlacement /
MinOverlapPlacement / MinOverlapPercentPlacement / TileManualPlacement /
TileCascadePlacement / PositionPlacement, MinOverlapPlacementPenalties,
MinOverlapPercentPlacementPenalties, DecorateTransient / NakedTransient, DontRaiseTransient
/ RaiseTransient, DontLowerTransient / LowerTransient, DontStackTransientParent /
StackTransientParent, SkipMapping / ShowMapping, ScatterWindowGroups /
KeepWindowGroupsOnDesk, UseDecor, UseStyle, !UsePPosition / NoPPosition / UsePPosition,
!UseUSPosition, NoUSPosition / UseUSPosition, !UseTransientPPosition, NoTransientPPosition /
UseTransientPPosition, !UseTransientUSPosition / NoTransientUSPosition /
UseTransientUSPosition, !UseIconPosition / NoIconPosition / UseIconPosition, Lenience /
!Lenience, ClickToFocus / SloppyFocus / MouseFocus|FocusFollowsMouse / NeverFocus,
ClickToFocusPassesClickOff / ClickToFocusPassesClick, ClickToFocusRaisesOff /
ClickToFocusRaises, MouseFocusClickRaises / MouseFocusClickRaisesOff, GrabFocus /
GrabFocusOff, GrabFocusTransientOff / GrabFocusTransient, FPFocusClickButtons,
FPFocusClickModifiers, !FPSortWindowlistByFocus / FPSortWindowlistByFocus,
FPClickRaisesFocused / !FPClickRaisesFocused, FPClickDecorRaisesFocused /
!FPClickDecorRaisesFocused, FPClickIconRaisesFocused / !FPClickIconRaisesFocused,
!FPClickRaisesUnfocused / FPClickRaisesUnfocused, FPClickDecorRaisesUnfocused /
!FPClickDecorRaisesUnfocused, FPClickIconRaisesUnfocused / !FPClickIconRaisesUnfocused,
FPClickToFocus / !FPClickToFocus, FPClickDecorToFocus / !FPClickDecorToFocus,
FPClickIconToFocus / !FPClickIconToFocus, !FPEnterToFocus / FPEnterToFocus,
!FPLeaveToUnfocus / FPLeaveToUnfocus, !FPFocusByProgram / FPFocusByProgram,
!FPFocusByFunction / FPFocusByFunction, FPFocusByFunctionWarpPointer /
!FPFocusByFunctionWarpPointer, FPLenient / !FPLenient, !FPPassFocusClick /
FPPassFocusClick, !FPPassRaiseClick / FPPassRaiseClick, FPIgnoreFocusClickMotion /
!FPIgnoreFocusClickMotion, FPIgnoreRaiseClickMotion / !FPIgnoreRaiseClickMotion,
!FPAllowFocusClickFunction / FPAllowFocusClickFunction, !FPAllowRaiseClickFunction /

05-Sep-2019 66

FVWM(1) Fvwm 2.6.9 FVWM(1)

FPAllowRaiseClickFunction, FPGrabFocus / !FPGrabFocus, !FPGrabFocusTransient /
FPGrabFocusTransient, FPOverrideGrabFocus / !FPOverrideGrabFocus, FPReleaseFocus /
!FPReleaseFocus, !FPReleaseFocusTransient / FPReleaseFocusTransient,
FPOverrideReleaseFocus / !FPOverrideReleaseFocus, StartsLowered / StartsRaised,
IgnoreRestack / AllowRestack, FixedPosition / VariablePosition, FixedUSPosition /
VariableUSPosition, FixedPPosition / VariablePPosition, FixedSize / VariableSize, FixedUSSize /
VariableUSSize, FixedPSize / VariablePSize, !Closable / Closable, !Iconifiable / Iconifiable,
!Maximizable / Maximizable, !AllowMaximizeFixedSize / AllowMaximizeFixedSize, IconOverride /
NoIconOverride / NoActiveIconOverride, DepressableBorder / FirmBorder, MinWindowSize,
MaxWindowSize, IconifyWindowGroups / IconifyWindowGroupsOff, ResizeOpaque /
ResizeOutline, BackingStore / BackingStoreOff / BackingStoreWindowDefault, Opacity /
ParentalRelativity, SaveUnder / SaveUnderOff, WindowShadeShrinks / WindowShadeScrolls,
WindowShadeSteps, WindowShadeAlwaysLazy / WindowShadeBusy / WindowShadeLazy,
EWMHDonateIcon / EWMHDontDonateIcon, EWMHDonateMiniIcon /
EWMHDontDonateMiniIcon, EWMHMiniIconOverride / EWMHNoMiniIconOverride,
EWMHUseStackingOrderHints / EWMHIgnoreStackingOrderHints, EWMHIgnoreStateHints /
EWMHUseStateHints, EWMHIgnoreStrutHints / EWMHUseStrutHints,
EWMHIgnoreWindowType / !EWMHIgnoreWindowType, EWMHMaximizeIgnoreWorkingArea /
EWMHMaximizeUseWorkingArea / EWMHMaximizeUseDynamicWorkingArea,
EWMHPlacementIgnoreWorkingArea / EWMHPlacementUseWorkingArea /
EWMHPlacementUseDynamicWorkingArea, MoveByProgramMethod, Unmanaged, State,
SnapGrid, SnapAttraction, EdgeMoveDelay, EdgeResizeDelay. EdgeMoveResistance,
InitialMapCommand

In the above list some options are listed as style-option/opposite-style-option. The
opposite-style-option for entries that have them describes the fvwm default behavior and can be
used if you want to change the fvwm default behavior.

Focus policy
ClickToFocus instructs fvwm to give the focus to a window when it is clicked in. The
default MouseFocus (or its alias FocusFollowsMouse) tells fvwm to give a window the
focus as soon as the pointer enters the window, and take it away when the pointer leaves
the window. SloppyFocus is similar, but doesn’t give up the focus if the pointer leaves the
window to pass over the root window or a ClickToFocus window (unless you click on it,
that is), which makes it possible to move the mouse out of the way without losing focus.
A window with the style NeverFocus never receives the focus. This is useful for modules
like FvwmButtons. for example. Note: Once any of the "FP..." styles has been used, the
defaults that come with the basic focus policies are not restored when the latter are used
again. For example, once !FPGrabFocus has been used, using ClickToFocus does not
restore FPGrabFocus.

The focus model can be augmented with several additional options. In fvwm-2.5.3 and
later, there are a large number of advanced options beginning with "FP" or "!FP". These
options shall replace the older options one day and are described first. Using any of these
new options may limit compatibility with older releases. In general, options beginning
with "FP" turn a feature on, while those beginning with "!FP" turn it off.

Focusing the window
With FPEnterToFocus, when the pointer enters a window it receives focus.

With FPLeaveToUnfocus a window loses focus when the pointer leaves it.

With FPClickToFocus, FPClickDecorToFocus or FPClickIconToFocus, a window
receives focus when the inside of the window or the decorations or its icon is clicked.

The FPFocusByProgram style allows windows to take the focus themselves.

The !FPFocusByFunction style forbids that a window receives the focus via the Focus
and FlipFocus commands.

05-Sep-2019 67

FVWM(1) Fvwm 2.6.9 FVWM(1)

The FPFocusByFunctionWarpPointer style controls if the pointer is warped to a selected
window when the Focus command is used.

FPLenient allows focus on windows that do not want it, like FvwmPager or xclock.

The FPFocusClickButtons style takes a list of mouse buttons that can be clicked to focus
or raise a window when the appropriate style is used. The default is to use the first three
buttons ("123").

The FPFocusClickModifiers style takes a list of modifier keys just like the Key command.
The exact combination of modifier keys must be pressed for the click to focus or raise a
window to work. The default is to use no modifiers ("N").

With the FPPassFocusClick style, the click that was used to focus a window is passed to
the application.

With the FPAllowFocusClickFunction style, the click that was used to focus a window
can also trigger a normal action that was bound to the window with the Mouse
command).

If the FPIgnoreFocusClickMotion style is used, clicking in a window and then dragging
the pointer with the button held down does not count as the click to focus the window.
Instead, the application processes these events normally. This is useful to select text in a
terminal window with the mouse without raising the window. However, mouse bindings
on the client window are not guaranteed to work anymore (see Mouse command). This
style forces the initial click to be passed to the application. The distance that the pointer
must be moved to trigger this is controlled by the MoveThreshold command.

The FPSortWindowlistByFocus and !FPSortWindowlistByFocus styles control whether
the internal window list is sorted in the order the windows were focused or in the order
they were created. The latter is the default for ClickToFocus and SloppyFocus.

Clicking the window to raise

The styles FPClickRaisesFocused, FPClickDecorRaisesFocused and
FPClickIconRaisesFocused allow one to raise the window when the interior or the
decorations or the icon of the window is clicked while the window is already focused.

The styles FPClickRaisesUnfocused, FPClickDecorRaisesUnfocused and
FPClickIconRaisesUnfocused allow one to raise the window when the interior or the
decorations or the icon of the window is clicked while the window is not yet focused.

With the FPPassRaiseClick style, the click that was used to raise the window is passed to
the application.

With the FPAllowRaiseClickFunction style, the click that was used to raise the window
can also trigger a normal action that was bound to the window with the Mouse command.

If the FPIgnoreRaiseClickMotion style is used, clicking in a window and then dragging
the pointer with the button held down does not count as the click to raise the window.
Instead, the application processes these events normally. This is useful to select text in a
terminal window with the mouse without raising the window. However, mouse bindings
on the client window are not guaranteed to work anymore (see Mouse command. Note
that this style forces that the initial click is passed to the application. The distance that
the pointer must be moved to trigger this is controlled by the MoveThreshold command.

Grabbing the focus when a new window is created

New normal or transient windows with the FPGrabFocus or FPGrabFocusTransient style
automatically receive the focus when they are created. FPGrabFocus is the default for
windows with the ClickToFocus style. Note that even if these styles are disabled, the
application may take the focus itself. Fvwm can not prevent this.

The OverrideGrabFocus style instructs fvwm to never take away the focus from such a

05-Sep-2019 68

FVWM(1) Fvwm 2.6.9 FVWM(1)

window via the GrabFocus or GrabFocusTransient styles. This can be useful if you like
to have transient windows receive the focus immediately, for example in a web browser,
but not while you are working in a terminal window or a text processor.

The above three styles are accompanied by FPReleaseFocus, FPReleaseFocusTransient
and FPOverrideReleaseFocus. These control if the focus is returned to another window
when the window is closed. Otherwise no window or the window under the pointer
receives the focus.

ClickToFocusPassesClickOff and ClickToFocusPassesClick controls whether a mouse
click to focus a window is sent to the application or not. Similarly,
ClickToFocusRaisesOff/MouseFocusClickRaisesOff and
ClickToFocusRaises/MouseFocusClickRaises control if the window is raised (but
depending on the focus model).

Note: in fvwm versions prior to 2.5.3, the "Click..." options applied only to windows with
ClickToFocus while the "Mouse..." options applied to windows with a different focus
policy. This is no longer the case.

The old GrabFocus style is equivalent to using FPGrabFocus + FPReleaseFocus.

The old GrabFocusTransient style is equivalent to using FPGrabFocusTransient +
FPReleaseFocusTransient.

Lenience is equivalent to the new style FPLenient.

Window title
The Title and !Title options determine if the window has a title-bar or not. By default all
windows have a title-bar. NoTitle is equivalent to !Title but is deprecated.

Windows with the TitleAtBottom, TitleAtLeft or TitleAtRight style have a title-bar below,
to the left or to the right of the window instead of above as usual. The TitleAtTop style
restores the default placement. Even if the window has the !Title style set, this affects the
WindowShade command. Please check the WindowShade command for interactions
between that command and these styles. Titles on the left or right side of the windows
are augmented by the following styles:

Normally, the text in titles on the left side of a window is rotated counterclockwise by 90
degrees from the normal upright position and 90 degrees clockwise for titles on the right
side. It can also be rotated in the opposite directions with LeftTitleRotatedCW if
TitleAtLeft is used, and with RightTitleRotatedCCW if TitleAtRight is used. The defaults
can be restored with LeftTitleRotatedCCW and RightTitleRotatedCW. A normal
horizontal text may be rotated as well with TopTitleRotated if TitleAtTop is used, and with
BottomTitleRotated if TitleAtBottom is used. The defaults can be restored with
TopTitleNotRotated and BottomTitleNotRotated.

By default the title bar decoration defined using the TitleStyle command is rotated
following the title text rotation (see the previous paragraph). This can be disabled by
using the !UseTitleDecorRotation style. UseTitleDecorRotation reverts back to the
default.

With the StippledTitle style, titles are drawn with the same effect that is usually reserved
for windows with the Sticky, StickyAcrossPages or StickyAcrossDesks style.
!StippledTitle reverts back to normal titles. StippledTitleOff is equivalent to !StippledTitle
but is deprecated.

Color takes two arguments. The first is the window-label text color and the second is the
window decorations normal background color. The two colors are separated with a slash.
If the use of a slash causes problems then the separate ForeColor and BackColor options
can be used.

Colorset takes the colorset number as its sole argument and overrides the colors set by

05-Sep-2019 69

FVWM(1) Fvwm 2.6.9 FVWM(1)

Color. Instead, the corresponding colors from the given colorset are used. Note that all
other features of a colorset are not used. Use the Colorset decoration style in the
TitleStyle and ButtonStyle command for that. To stop using the colorset, the colorset
number is omitted.

The HilightFore, HilightBack and HilightColorset style options work exactly like
ForeColor, BackColor and Colorset but are used only if the window has the focus. These
styles replace the old commands HilightColor and HilightColorset.

BorderColorset takes the colorset number as its sole argument and overrides the colors
set by Color or Colorset. for the window border. To stop using a colorset, the argument
is omitted.

The HilightBorderColorset style option works similarly to BorderColorset but is used
when the window has the focus.

!IconTitle disables displaying icon labels while the opposite style IconTitle enables icon
labels (default behaviour). NoIconTitle is equivalent to !IconTitle but is deprecated.

IconTitleColorset takes the colorset number as its sole argument and overrides the colors
set by Color or Colorset. To stop using this colorset, the argument is omitted.

HilightIconTitleColorset takes the colorset number as its sole argument and overrides the
colors set by HilightColor or HilightColorset. To stop using this colorset, the argument
is omitted.

IconBackgroundColorset takes the colorset number as its sole argument and uses it to set
a background for the icon picture. By default the icon picture is not drawn onto a
background image. To restore the default, the argument is omitted.

IconTitleRelief takes one numeric argument that may be between -50 and +50 pixels and
defines the thickness of the 3D relief drawn around the icon title. With negative values
the icon title gets a pressed in look. The default is 2 and it is restored if the argument is
omitted.

IconBackgroundRelief takes one numeric argument that may be between -50 and +50
pixels and defines the thickness of the 3D relief drawn around the icon picture
background (if any). With negative values the icon background gets a pressed in look.
The default is 2 and it is restored if the argument is omitted.

IconBackgroundPadding takes one numeric argument that may be between 0 and 50
pixels and defines the amount of free space between the relief of the icon background
picture (if any) and the icon picture. The default is 2 and it is restored if the argument is
omitted.

The Font and IconFont options take the name of a font as their sole argument. This font
is used in the window or icon title. By default the font given in the DefaultFont
command is used. To revert back to the default, use the style without the name argument.
These styles replace the older WindowFont and IconFont commands.

The deprecated IndexedWindowName style causes fvwm to use window titles in the form

name (i)

where name is the exact window name and i is an integer which represents the i th
window with name as window name. This has been replaced with:

TitleFormat %n (%t)

ExactWindowName restores the default which is to use the exact window name.
Deprecated in favour of:

TitleFormat %n

05-Sep-2019 70

FVWM(1) Fvwm 2.6.9 FVWM(1)

IndexedIconName and ExactIconName work the same as IndexedWindowName and
ExactWindowName styles but for the icon titles. Both are deprecated in favour of:

IconTitleFormat %n (%t)
IconTitleFormat %n

TitleFormat describes what the visible name of a window should look like, with the
following placeholders being valid:

%n
Insert the window’s name.

%i
Insert the window’s icon name.

%c
Insert the window’s class name.

%r
Insert the window’s resource name.

%t
Insert the window count.

%I
Insert the window ID.

%%
Insert a literal ’%’ character.

Any amount of whitespace may be used, along with other characters to make up the
string -- but a valid TitleFormat string must contain at least one of the placeholders
mentioned. No quote stripping is performed on the string, so for example the following is
printed verbatim:

TitleFormat " %n " -> [%t] -> [%c]

Note: It’s perfectly possible to use a TitleFormat which can result in wiping out the
visible title altogether. For example:

TitleFormat %z

Simply because the placeholder ’%z’ isn’t supported. This is not a bug but rather a facet
of how the formatting parser works.

IconTitleFormat describes what the visible icon name of a window should look like, with
the options being the same as TitleFormat.

Title buttons
Button and !Button take a numeric argument which is the number of the title-bar button
which is to be shown or omitted. NoButton is equivalent to !Button but is deprecated.

MwmButtons makes the Maximize button look pressed-in when the window is
maximized. See the MwmDecorMax flag in ButtonStyle for more information. To
switch this style off again, use the FvwmButtons style.

Borders
!Borders suppresses the window border (but not the title) completely. The Borders style
enables them again. Without borders, all other styles affecting window borders are
meaningless.

MwmBorder makes the 3D bevel more closely match Mwm’s. FvwmBorder turns off the
previous option.

With the !Handles style, the window does not get the handles in the window corners that

05-Sep-2019 71

FVWM(1) Fvwm 2.6.9 FVWM(1)

are commonly used to resize it. With !Handles, the width from the BorderWidth style is
used. By default, or if Handles is specified, the width from the HandleWidth style is
used. NoHandles is equivalent to !Handles but is deprecated.

HandleWidth takes a numeric argument which is the width of the border to place the
window if it does have resize-handles. Using HandleWidth without an argument restores
the default.

BorderWidth takes a numeric argument which is the width of the border to place the
window if it does not have resize-handles. It is used only if the !Handles style is
specified too. Using BorderWidth without an argument restores the default.

DepressableBorder makes the border parts of the window decoration look sunken in
when a button is pressed over them. This can be disabled again with the FirmBorder
style.

Icons, shading, maximizing, movement, resizing
Icon takes an (optional) unquoted string argument which is the icon bitmap or pixmap to
use. Icons specified this way override pixmap icons, but not icon windows or the ewmh
icon, provided by the client in the application (with the WM_HINTS property or with the
ewmh _NET_WM_ICON property). The IconOverride style changes the behavior to
override any client-provided icons; the NoIconOverride style changes the behavior to not
override any client-provided icons; the default overriding behavior can be activated with
the NoActiveIconOverride style. With this style, fvwm uses application provided icons if
the icon is changed but uses the icon provided in the configuration file until then.

There is one exception to these rules, namely

Style * Icon unknown.xpm

doesn’t force the unknown.xpm icon on every window, it just sets the default icon like the
DefaultIcon command. If you really want all windows to have the same icon, you can
use

Style ** Icon unknown.xpm

If the NoIcon attribute is set then the specified window simply disappears when it is
iconified. The window can be recovered through the window-list. If Icon is set without
an argument then the NoIcon attribute is cleared but no icon is specified. An example
which allows only the FvwmPager module icon to exist:

Style * NoIcon
Style FvwmPager Icon

IconBox takes no argument, four numeric arguments (plus optionally a screen
specification), an X11 geometry string or the string "none":

IconBox [screen scr-spec] l t r b

or

IconBox geometry

Where l is the left coordinate, t is the top, r is right and b is bottom. Negative coordinates
indicate distance from the right or bottom of the screen. If the first argument is the word
screen, the scr-spec argument specifies the Xinerama screen on which the IconBox is
defined. It can be the usual screen Xinerama specification, ’p’, ´c’, ’g’, a screen number
or the additional ’w’ for the screen where the window center is located. This is only
useful with multiple Xinerama screens. The "l t r b" specification is more flexible than an
X11 geometry. For example:

05-Sep-2019 72

FVWM(1) Fvwm 2.6.9 FVWM(1)

IconBox -80 240 -1 -1

defines a box that is 80 pixels wide from the right edge, 240 pixels down from the top,
and continues to the bottom of the screen.

Perhaps it is easier to use is an X11 geometry string though:

IconBox 1000x70-1-1

places an 1000 by 70 pixel icon box on the bottom of the screen starting in the lower right
hand corner of the screen. One way to figure out a geometry like this is to use a window
that resizes in pixel increments, for example, xv. Then resize and place the xv window
where you want the iconbox. Then use FvwmIdent to read the windows geometry. The
icon box is a region of the screen where fvwm attempts to put icons for any matching
window, as long as they do not overlap other icons. Multiple icon boxes can be defined
as overflow areas. When the first icon box is full, the second one is filled. All the icon
boxes for one style must be defined in one Style command. For example:

Style * IconBox -80 240 -1 -1, \
IconBox 1000x70-1-1

A Style command with the IconBox option replaces any icon box defined previously by
another Style command for the same style. That’s why the backslash in the previous
example is required.

Note: The geometry for the icon box command takes the additional screen specifier
"@w" in case a Xinerama setup is used. This designates the screen where the window
center is located. The additional screen specifier is not allowed anywhere else.

If you never define an icon box, or you fill all the icon boxes, fvwm has a default icon
box that covers the screen, it fills top to bottom, then left to right, and has an 80x80 pixel
grid. To disable all but the default icon box you can use IconBox without arguments in a
separate Style command. To disable all icon boxes including the default icon box, the
argument "none" can be specified.

Hint: You can auto arrange your icons in the icon box with a simple fvwm function. Put
the "DeiconifyAndRearrange" function below in your configuration file:

AddToFunc DeiconifyAndRearrange
+ C Iconify off
+ C All (CurrentPage, Iconic) PlaceAgain Icon

And then replace all places where you call the Iconify command to de-iconify an icon
with a call to the new function. For example replace

AddToFunc IconFunc
+ C Iconify off
+ M Raise
+ M Move
+ D Iconify off

Mouse 1 I A Iconify off

with

AddToFunc IconFunc
+ C DeiconifyAndRearrange
+ M Raise
+ M Move
+ D DeiconifyAndRearrange

05-Sep-2019 73

FVWM(1) Fvwm 2.6.9 FVWM(1)

Mouse 1 I A DeiconifyAndRearrange

IconGrid takes 2 numeric arguments greater than zero.

IconGrid x y

Icons are placed in an icon box by stepping through the icon box using the x and y values
for the icon grid, looking for a free space. The default grid is 3 by 3 pixels which gives a
tightly packed appearance. To get a more regular appearance use a grid larger than your
largest icon. Use the IconSize argument to clip or stretch an icon to a maximum size. An
IconGrid definition must follow the IconBox definition that it applies to:

Style * IconBox -80x240-1-1, IconGrid 90 90

IconFill takes 2 arguments.

IconFill Bottom Right

Icons are placed in an icon box by stepping through the icon box using these arguments
to control the direction the box is filled in. By default the direction is left to right, then
top to bottom. This would be expressed as:

IconFill left top

To fill an icon box in columns instead of rows, specify the vertical direction (top or
bottom) first. The directions can be abbreviated or spelled out as follows: "t", "top", "b",
"bot", "bottom", "l", "lft", "left", "r", "rgt", "right". An IconFill definition must follow
the IconBox definition that it applies to:

Style * IconBox -80x240-1-1, IconFill b r

IconSize sets limits on the size of an icon image. Both user-provided and
application-provided icon images are affected.

IconSize [width height [maxwidth maxheight]]

All arguments are measured in pixels. When all four arguments are passed to IconSize,
width and height represent the minimum size of an icon, and maxwidth and maxheight
represent the maximum size of an icon. Icon images that are smaller than the minimum
size are padded. Icon images that are bigger than the maximum size are clipped.

If only two arguments are passed to IconSize, width and height represent the absolute size
of an icon. Icons covered by this style are padded or clipped to achieve the given size.

If no arguments are specified, the default values are used for each dimension. This
effectively places no limits on the size of an icon.

The value of "-1" can be used in place of any of the arguments to specify the default
value for that dimension.

In addition to the numeric arguments, 1 additional argument can be "Stretched",
"Adjusted", or "Shrunk".

Note that module provided icon managers are not affected by this style.

MiniIcon specifies a pixmap to use as the miniature icon for the window. This miniature icon can
be drawn in a title-bar button (see ButtonStyle), and can be used by various fvwm modules
(FvwmIconMan and FvwmPager). It takes the name of a pixmap as an argument.

WindowShadeShrinks and WindowShadeScrolls control if the contents of a window that is being
shaded with the WindowShade command are scrolled (default) or if they stay in place. The
shrinking mode is a bit faster

05-Sep-2019 74

FVWM(1) Fvwm 2.6.9 FVWM(1)

The WindowShadeSteps option selects the number of steps for animation when shading a window
with WindowShade. It takes one number as its argument. If the number has a trailing ’p’ it sets
the number of pixels to use as the step size instead of a fixed number of steps. 0 disables the
animation. This happens too if the argument is omitted or invalid.

The WindowShade command has two modes of operation: busy and lazy shading. Busy shading
can be 50% slower than lazy shading, but the latter can look strange under some conditions, for
example, if the window borders, buttons or the title are filled with a tiled pixmap. Also, the
window handles are not drawn in lazy mode and the border relief may only be drawn partially
right before the window reaches the shaded state or tight after leaves the unshaded state. By
default, fvwm uses lazy mode if there are no bad visual effects (not counting the window handles)
and busy mode otherwise. Use the WindowShadeAlwaysLazy or WindowShadeBusy to force using
the lazy or busy mode. The default setting is restored with WindowShadeLazy.

ResizeOpaque instructs fvwm to resize the corresponding windows with their contents visible
instead of using an outline. Since this causes the application to redraw frequently it can be quite
slow and make the window flicker excessively, depending on the amount of graphics the
application redraws. The ResizeOutline style (default) negates the ResizeOpaque style. Many
applications do not like their windows being resized opaque, e.g. XEmacs, Netscape or terminals
with a pixmap background. If you do not like the result, do not use the ResizeOpaque style for
these windows. To exempt certain windows from opaque resizing you could use these lines in
your configuration file:

Style * ResizeOpaque
Style rxvt ResizeOutline
Style emacs ResizeOutline

Sticky makes the window sticky, i.e. it is always visible on each page and each desk. The opposite
style, Slippery reverts back to the default.

StickyIcon makes the window sticky when it’s iconified. It de-iconifies on top the active desktop.
SlipperyIcon reverts back to the default.

StickyAcrossPages and StickyAcrossPagesIcon work like Sticky and StickyIcon, but stick the
window only across pages, not desks while StickyAcrossDesks and StickyAcrossDesksIcon works
the other way round.

Windows that have been marked as Sticky or StickyAcrossDesks or StickyAcrossPages will have
stipples drawn on the titlebar. This can be negated with the !StickyStippledTitle style. The style
StickyStippledTitle puts back the stipples where that window has also been marked as Sticky. Note
that this is the default style for Sticky windows. Sticky icons will have stipples drawn on the icon
title. This can be disabled in the same way with the !StickyStippledIconTitle style.

Windows with the StartIconic style are shown as icons initially. Note that some applications
counteract that by deiconifying themselves. The default is to not iconify windows and can be set
with the StartNormal style.

StickyIcon makes the window sticky when it’s iconified. It de-iconifies on top the active desktop.
SlipperyIcon reverts back to the default.

StickyIconPage works like StickyIcon, but sticks the icon only across pages, not desks while
StickyIconDesk works the other way round.

StippledIconTitle works like StippledTitle in that it draws stipples on the titles of icons but doesn’t
make the icon sticky.

IgnoreRestack makes fvwm ignore attempts of clients to raise or lower their own windows. By
default, the opposite style, AllowRestack is active.

FixedPosition and FixedUSPosition make fvwm ignore attempts of the user to move the window.
It is still possible to move the window by resizing it. To allow the user to move windows, use the
VariablePosition or VariableUSPosition style.

05-Sep-2019 75

FVWM(1) Fvwm 2.6.9 FVWM(1)

FixedSize and FixedUSSize make fvwm ignore attempts of the user to resize the window. To allow
the user to resize windows, use the VariableSize or VariableUSSize style.

FixedPPosition and FixedPSize make fvwm ignore attempts of the program to move or resize its
windows. To allow this kind of actions, use the VariablePPosition or VariablePSize style. These
styles may sometimes affect the initial placement and dimensions of new windows (depending on
the application). If windows are created at strange places, try either the VariablePPosition or
!UsePPosition styles. The FixedPSize style may screw up window dimensions for some
applications. Do Not use this style in this case.

MoveByProgramMethod affects how fvwm reacts to requests by the application to move its
windows. By default, fvwm tries to detect which method to use, but it sometimes detects the
wrong method. You may come across a window that travels across the screen by a few pixels
when the application resizes it, moves to a screen border with the frame decorations off screen,
that remembers its position for the next time it starts but appears in a slighly shifted position, or
that attepmts to become full screen but has the. Try out both options, UseGravity and
IgnoreGravity on the window (and that window only) and see if that helps. By default, fvwm uses
the AutoDetect method. Once the method was detected, it is never changed again. As long as
fvwm can not detect the proper method, it uses IgnoreGravity. To force fvwm to retry the
detection, use one of the other two options first and then use AutoDetect again.

Note: This option was introduced to alleviate a problem with the ICCCM specification. The
ICCCM clearly states that the UseGravity option should be used, but traditionally applications
ignored this rule.

Closable enables the functions Close, Delete and Destroy to be performed on the windows. This
is on by default. The opposite, !Closable, inhibits the window to be closed.

Iconifiable enables the function Iconify to be performed on the windows. This is on by default.
The opposite, !Iconifiable, inhibits the window from being iconified.

Maximizable enables the function Maximize to be performed on the windows. This is on by
default. The opposite, !Maximizable, inhibits the window from being maximized.

AllowMaximizeFixedSize enables the function Maximize to be performed on windows that are not
resizable, unless maximization has been disabled either using the style !Maximizable or through
WM hints. This is on by default. The opposite, !AllowMaximizeFixedSize, inhibits all windows
that are not resizable from being maximized.

ResizeHintOverride instructs fvwm to ignore the program supplied minimum and maximum size
as well as the resize step size (the character size in many applications). This can be handy for
broken applications that refuse to be resized. Do not use it if you do not need it. The default
(opposite) style is NoResizeOverride.

MinWindowSize [width [p] height [p]] Tells fvwm the minimum width and height of a
window. The values are the percentage of the total screen area. If the letter ’p’ is appended to
either of the values, the numbers are interpreted as pixels. This command is useful for certain
versions of xemacs which freak out if their windows become too small. If you omit he parameters
or their values are invalid, both limits are set to 0 pixels (which is the default value).

MaxWindowSize [width [p] height [p]] Tells fvwm the maximum width and height of a
window. The values are the percentage of the total screen area. If the letter ’p’ is appended to
either of the values, the numbers are interpreted as pixels. This command is useful to force large
application windows to be fully visible. Neither height nor width may be less than 100 pixels. If
you omit the parameters or their values are invalid, both limits are set to 32767 pixels (which is the
default).

With IconifyWindowGroups all windows in the same window group are iconified and deiconified
at once when any window in the group is (de)iconified. The default is IconifyWindowGroupsOff,
which disables this behavior. Although a number of applications use the window group hint, it is
rarely used in a proper way, so it is probably best to use IconifyWindowGroups only for selected

05-Sep-2019 76

FVWM(1) Fvwm 2.6.9 FVWM(1)

applications.

The option SnapAttraction affects interactive window movement: If during an interactive move the
window or icon comes within proximity pixels of another the window or icon, it is moved to make
the borders adjoin. The default of 0 means that no snapping happens. Calling this command
without arguments turns off snap attraction and restores the default behavior. Please refer also to
the SnapGrid command.

The second argument determined is optional and may be set to one of the five following values:
With All both icons and windows snap to other windows and other icons. SameType lets windows
snap only to windows, and icons snap only to icons. With Windows windows snap only to other
windows. Similarly with Icons icons snap only to other icons. With None no snapping takes
place. This option can be useful in conjunction with the following argument if you only want to
snap against the screen edges. The default behavior is All.

The third and last optional argument may be set to one of the four following values:

• With Screen the already snapping icons or windows, which is controlled by the second
argument, will snap now also to the screen edges.

• ScreenWindows snaps only windows to the screen edges.

• ScreenIcons snaps only icons to the screen edges.

• ScreenAll snaps windows and icons to the screen edges.

The option SnapGrid defines an invisible grid on the screen. During an interactive move a
window or icon is positioned such that its location (top left corner) is coincident with the nearest
grid point. The default x-grid-size and y-grid-size setting are both 1, which is effectively no
grid all.

An interactive move with both SnapGrid and SnapAttraction results in the window being moved
to be adjacent to the nearest window border (if within snap proximity) or grid position. The
window moves the shortest distance possible to satisfy both SnapGrid and SnapAttraction. Note
that the x and y coordinates are not coupled. For example, a window may snap to another window
on the x axis while snapping to a grid point on the y axis. Using this style without arguments
reinstates the default settings.

The styles EdgeMoveDelay and EdgeResizeDelay tells how hard it should be to change the
desktop viewport by moving or resizing a window over the edge of the screen. The parameter tells
how many milliseconds the pointer must spend on the screen edge before fvwm moves the
viewport. The command EdgeScroll determines how far the viewport is scrolled. If -1 is given
as the delay, page flipping is disabled completely. The defaults are no delay for moving (0) and no
flipping for resizing (-1). Using these styles without any argument restores the default settings.
Note that, with

EdgeScroll 0 0

it is still possible to move or resize windows across the edge of the current screen. See also
EdgeThickness.

The option EdgeMoveResistance makes it easier to place a window directly adjacent to the
screen’s or xinerama screen’s border. It takes one or two parameters. The first parameter tells how
many pixels over the edge of the screen a window’s edge must move before it actually moves
partially off the screen. The optional second parameter does the same as the first, but for
individual Xinerama screens. If omitted, the value of the first parameter is assumed for this type
of movement. Set the second parameter to 0 to zero to ignore individual xinerama screen edges.
Note that the center of the window being moved determines the xinerama screen on which the
window should be kept. Both values are 0 by default. To restore the defaults, the option

05-Sep-2019 77

FVWM(1) Fvwm 2.6.9 FVWM(1)

EdgeMoveResistance can be used without any parameters.

The option InitialMapCommand allows for any valid fvwm command or function to run when the
window is initially mapped by fvwm. Example:

Style MyWindow StartsOnPage 0 0, InitialMapCommand Iconify

This would hence place the window called MyWindow on page 0 0 for the current desk, and
immediately run the Iconify command on that window.

Note that should InitialMapCommand be used as a global option for all windows, but there is a
need that some windows should not have this command applied, then an action of Nop can be
used on those windows, as in the following example:

Style * InitialMapCommand Iconify
Style XTeddy InitialMapCommand Nop

Window Manager placement
Applications can place windows at a particular spot on the screen either by window manager hints
or a geometry specification. When they do neither, then the window manager steps in to find a
place for the window. Fvwm knows several ways to deal with this situation. The default is
TileCascadePlacement.

PositionPlacement [Center|UnderMouse|move-arguments] When used without an argument, new
windows are placed in the top left corner of the display. With the argument Center, all new
window appear at the center of the screen, and with UnderMouse, windows are centered under the
mouse pointer where possible. If the window is unable to fit on the screen because the pointer is at
the edge of the screen, then the window is forced on-screen using this option. If any other
move-arguments are given, they are interpreted exactly as the Move command does (with the
exception that references to the current window position do not work as the window has not been
placed yet).

CascadePlacement automatically place new windows in a cascading fashion.

TileCascadePlacement automatically places new windows in a smart location - a location in
which they do not overlap any other windows on the screen. If no such position can be found
CascadePlacement is used as a fall-back method.

TileManualPlacement This is the same as TileCascadePlacement, but uses ManualPlacement as
the fall-back method.

MinOverlapPlacement automatically places new windows in a location in which the overlapping
area in pixels of other windows is minimized. By default this placement policy tries to avoid
overlapping icons and windows on higher layers. This can be configured with the
MinOverlapPlacementPenalties style.

MinOverlapPercentPlacement is similar to MinOverlapPlacement but tries to minimize the
overlapped percentages of other windows instead of the overlapped area in pixels. This placement
policy tries to avoid covering other windows completely and tries even harder not to cover small
windows. This can be configured with the MinOverlapPlacementPenalties and
MinOverlapPercentPlacementPenalties styles.

MinOverlapPlacementPenalties takes at most 6 positive or null decimal arguments:

normal ontop icon sticky below strut

if trailing arguments are missing the default is used which is:

1 5 10 1 0.05 50

To reset this style to the default values, prefix it with a ’!’. This style configures the
MinOverlapPlacement and MinOverlapPercentPlacement placement policy. The normal factor

05-Sep-2019 78

FVWM(1) Fvwm 2.6.9 FVWM(1)

affects normal windows, the ontop factor affects windows with a greater layer than the window
being placed, the icon factor affects icons, the sticky factor affects sticky windows, the below
factor affects windows with a smaller layer than the window being placed, the strut factor affects
the complement of the EWMH working area if the window being placed has the
EWMHPlacementUseWorkingArea style and windows with an EWMH strut hint (i.e., a "please do
not cover me" hint) if the window being placed has the
EWMHPlacementUseDynamicWorkingArea style. These factors represent the amount of area that
these types of windows (or area) are counted as, when a new window is placed. For example, by
default the area of ontop windows is counted 5 times as much as normal windows. So
MinOverlapPlacement and MinOverlapPercentPlacement covers 5 times as much area of another
window before it will cover an ontop window. To treat ontop windows the same as other windows,
set this to 1. To really, really avoid putting windows under ontop windows, set this to a high value,
say 1000. This style affects the window already mapped and not the window which is currently
placed. There is one exception to this rule: in the case of the window being placed has the
EWMHPlacementUseWorkingArea style the strut factor affects the placed window.

MinOverlapPercentPlacementPenalties takes at most 4 positive or null integer arguments:

cover_100 cover_95 cover_85 cover_75

if trailing arguments are missing the defaults are used which are:

12 6 4 1

To reset this style to the default values, prefix it with a ’!’. This style affects the
MinOverlapPercentPlacement placement policy and is similar to the
MinOverlapPlacementPenalties style. The cover_xx factor is used when the window being placed
covers at least xx percent of the window. This factor is added to the factor determined by the
MinOverlapPlacementPenalties style.

ManualPlacement (aka active placement). The user is required to place every new window
manually. The window only shows as a rubber band until a place is selected manually. The
window is placed when a mouse button or any key except Escape is pressed. Escape aborts
manual placement which places the window in the top left corner of the screen. If mouse button 2
is pressed during the initial placement of a window (respectively Shift and mouse button 1 in case
Mwm emulation has been enabled with the Emulate command), the user is asked to resize the
window too.

It is possible to define buttons usable to place windows with the Move command and the special
context ’P’ for placement (see Move command). However, you can’t redefine the way to also
resize the window other than the way it is affected by the Emulate command. The button used for
placing the window can be checked with the PlacedByButton condition (see Current command).

Example:

Style * ManualPlacement

*FvwmEvent: PassID
*FvwmEvent: add_window GrowDownFunc
AddToFunc StartFunction
+ I FvwmEvent

AddToFunc GrowDownFunc
+ I windowid $0 (PlacedByButton 3) \
Resize bottomright keep -0p

Now, whenever a window is created and the user presses button 3 to finish initial placement, the
window is automatically enlarged until it hits the bottom screen border.

05-Sep-2019 79

FVWM(1) Fvwm 2.6.9 FVWM(1)

Old placement styles DumbPlacement / SmartPlacement / SmartPlacementOff, CleverPlacement /
CleverPlacementOff, ActivePlacement / RandomPlacement,
ActivePlacementsHonorsStartsOnPage / ActivePlacementsHonorsStartsOnPageOff, GlobalOpts
SmartPlacementIsReallySmart / GlobalOpts SmartPlacementIsNormal are still supported but will
be removed in the future. The old and new styles can be translated according to the following
table:

GlobalOpts SmartPlacementIsReallySmart
Style * SmartPlacement
-->
Style * SmartPlacement, CleverPlacement

GlobalOpts SmartPlacementIsNormal
Style * SmartPlacement
-->

Style * SmartPlacement, CleverPlacementOff

Style * DumbPlacement, RandomPlacement
-->

Style * CascadePlacement

Style * DumbPlacement, ActivePlacement
-->

Style * ManualPlacement

Style * SmartPlacement, \
RandomPlacement, CleverPlacementOff
-->

Style * TileCascadePlacement

Style * SmartPlacement, \
ActivePlacement, CleverPlacementOff
-->

Style * TileManualPlacement

Style * SmartPlacement, CleverPlacement
-->

Style * MinOverlapPlacement

Style * SmartPlacement, \
ActivePlacement, CleverPlacement
-->

Style * MinOverlapPercentPlacement

Style * ActivePlacementsHonorsStartsOnPage
-->

Style * ManualPlacementsHonorsStartsOnPage

Style * ActivePlacementsHonorsStartsOnPageOff
-->

Style * ManualPlacementsHonorsStartsOnPageOff

Placement policy options and window stacking
!UsePPosition instructs fvwm to ignore the program specified position (PPosition hint) when
adding new windows. Using PPosition is required for some applications, but if you do not have

05-Sep-2019 80

FVWM(1) Fvwm 2.6.9 FVWM(1)

one of those it’s a real headache. Many programs set PPosition to something obnoxious like 0,0
(upper left corner). Note: !UsePPosition is equivalent to the deprecated option !UsePPosition

!UseUSPosition works like !UsePPosition but applies suppresses using the user specified position
indicated by the program (USPosition hint). It is generally a bad thing to override the user’s
choice, but some applications misuse the USPosition hint to force their windows to a certain spot
on the screen without the user’s consent. Note: !UseUSPosition is equivalent to the deprecated
option !USPosition

NoUseTransientPPosition and UseTransientPPosition work like !UsePPosition and UsePPosition
but apply only to transient windows. Note: !UseTransientPPosition is equivalent to the deprecated
option !TransientPPosition

NoUseIconPosition instructs fvwm to ignore the program specified icon position (IconPosition
hint) when iconifying the window. Note: !UseIconPosition is equivalent to the deprecated option
!IconPosition

StartsOnDesk takes a numeric argument which is the desktop number on which the window
should be initially placed. Note that standard Xt programs can also specify this via a resource
(e.g. "-xrm ’*Desk: 1’").

StartsOnPage takes 1, 2, or 3 numeric arguments. If one or three arguments are given, the first (or
only) argument is the desktop number. If three arguments are given, the 2nd and 3rd arguments
identify the x,y page position on the virtual window. If two arguments are given, they specify the
page position, and indicate no desk preference. If only one argument is given, StartsOnPage
functions exactly like StartsOnDesk. For those standard Xt programs which understand this usage,
the starting desk/page can also be specified via a resource (e.g., "-xrm ’*page: 1 0 2’").
StartsOnPage in conjunction with SkipMapping is a useful technique when you want to start an
app on some other page and continue with what you were doing, rather than waiting for it to
appear.

StartsOnScreen takes one argument. It can be ’p’ for the primary screen, ’c’ for the current screen
(containing the mouse pointer), ’g’ for the global screen or the screen number itself (counting
from zero). A new window is placed on the specified Xinerama screen. The default is to place
windows on the screen that contains the mouse pointer at the time the window is created.
However, those windows which are not placed by fvwm (i.e., those with a USPosition hint from a
user specified geometry) are normally placed in a position relative to the global screen. The
StartsOnScreen style is also useful to cause these windows to be placed relative to a specific
Xinerama screen. For example:

Style * StartsOnScreen c

Would cause all windows, including those with their own geometry to be placed relative to the
current Xinerama screen rather than the global screen. For those standard Xt programs which
understand this usage, the starting desk/page can also be specified via a resource (e.g., "-xrm
’*fvwmscreen: c’"). (’fvwmscreen’ was chosen because some applications already use ´.screen’
for other purposes.)

StartsOnPageIncludesTransients causes the StartsOnPage style to be applied even for transient
windows. This is not usually useful, since transients are usually pop ups that you want to appear
in your visible viewport; but occasionally an application uses a transient for something like a
startup window that needs to be coerced into place.

ManualPlacementIgnoresStartsOnPage suppresses StartsOnPage or StartsOnDesk placement in
the event that both ManualPlacement and SkipMapping are in effect when a window is created.
This prevents you from interactively placing a window and then wondering where it disappeared
to, because it got placed on a different desk or page. ManualPlacementHonorsStartsOnPage
allows this to happen anyway. The option has no effect if SkipMapping is not in effect, because
fvwm switches to the proper desk/page to perform interactive placement. The default is
ManualPlacementIgnoresStartsOnPage; ManualPlacementHonorsStartsOnPage matches the way

05-Sep-2019 81

FVWM(1) Fvwm 2.6.9 FVWM(1)

the old StartsOnDesk style used to handle the situation.

CaptureHonorsStartsOnPage causes the initial capture (of an already existing window) at startup
to place the window according to the StartsOnPage and StartsOnScreen desk, page and Xinerama
screen specification. CaptureIgnoresStartsOnPage causes fvwm to ignore these settings
(including StartsOnDesk) on initial capture. The default is CaptureIgnoresStartsOnPage.

RecaptureHonorsStartsOnPage causes a window to be placed according to, or revert to, the
StartsOnPage and StartsOnScreen desk, page and Xinerama screen specification on Restart or
Recapture. RecaptureIgnoresStartsOnPage causes fvwm to respect the current window position
on Restart or Recapture. The default is RecaptureIgnoresStartsOnPage.

Layer accepts one optional argument: a non-negative integer. This is the layer the window is put
in. If no argument is given, any previously set value is deleted and the default layer is implied.

StaysOnTop puts the window in the top layer. This layer can be changed by the command
DefaultLayers; the default is 6.

StaysPut puts the window in the put layer. This layer can be changed by the command
DefaultLayers; the default is 4.

StaysOnBottom puts the window in the bottom layer. This layer can be changed by the command
DefaultLayers; the default is 2.

StartsLowered instructs fvwm to put the window initially at the bottom of its layer rather than the
default StartsRaised.

StartShaded tells fvwm to shade the window. An optional direction argument may be given,
which can be one of "North", "South", "West", "East", "NorthWest", "NorthEast", "SouthWest",
"SouthEast" or if no direction is given, the default is to shade north.

SkipMapping tells fvwm not to switch to the desk the window is on when it gets mapped initially
(useful with StartsOnDesk or StartsOnPage).

KeepWindowGroupsOnDesk makes new windows that have the window group hint set appear on
the same desk as the other windows of the same group. Since this behavior may be confusing, the
default setting is ScatterWindowGroups. The window group hint is ignored when placing
windows in this case.

Transient windows
DecorateTransient causes transient windows, which are normally left undecorated, to be given the
usual fvwm decorations (title bar, buttons, etc.). Note that some pop-up windows, such as the
xterm menus, are not managed by the window manager and still do not receive decorations.
NakedTransient (the default) causes transient windows not to be given the standard decorations.
You can only bind keys or mouse buttons to the sides and the client part of an undecorated window
(’S’ and ´W’ contexts in bindings, see Mouse and Key commands).

A window with the RaiseTransient style that has transient windows raises all its transients when it
is raised. The DontRaiseTransient style disables this behavior. All windows are then treated as if
they had no transients.

A window with the LowerTransient style that has transient windows lowers all its transients when
it is lowered. The DontLowerTransient style disables this behavior. All windows are then treated
as if they had no transients.

The StackTransientParent style augments RaiseTransient and LowerTransient styles. Raising a
window with StackTransientParent style transfers the raise action to the main window if the
window being raised is a transient and its main window has RaiseTransient style; this effect makes
raise on a transient act just like raise on its main - the whole group is raised. Similar behavior
holds for lowering a whole group of transients when the main has LowerTransient style.
DontStackTransientParent turns this behavior off. (Dont)StackTransientParent has no effect if
RaiseTransient and LowerTransient are not used.

05-Sep-2019 82

FVWM(1) Fvwm 2.6.9 FVWM(1)

A reasonable emulation of Motif raise/lower on transients is possible like this

Style * RaiseTransient
Style * LowerTransient
Style * StackTransientParent

Extended Window Manager Hints styles
To understand the used terminology in this sub section, please read the Extended Window
Manager Hints section.

EWMHDonateIcon instructs fvwm to set the application ewmh icon hint with the icon that is used
by fvwm if the application does not provide such hint (and if the icon used by fvwm is not an icon
window). EWMHDonateMiniIcon does the same thing for mini icons. This allows compliant
pager, taskbar, iconbox ...etc to display the same (mini) icons as fvwm. Note that on some
hardware (e.g., 8-bit displays) these styles can slow down window mapping and that in general
only one of these styles is needed by a compliant application. EWMHDontDonateIcon and
EWMHDontDonateMiniIcon restore the defaults which are to not set any ewmh (mini) icons hints.

By default, if an application provides an ewmh icon hint of small size (i.e., height and width less
than or equal to 22), then fvwm uses this icon as its mini icon. EWMHMiniIconOverride instructs
fvwm to ignore ewmh icons and to use the mini icon provided by the MiniIcon style.
EWMHNoMiniIconOverride restores the default.

EWMHUseStackingOrderHints causes fvwm to use EWMH hints and respect EWMH hints which
change the window layer. EWMHIgnoreStackingOrderHints causes fvwm to ignore EWMH layer
hints.

An application can ask for some reserved space on the desktop by a hint. In the EWMH
terminology such a hint is called a strut and it is used to compute the working area and may be
used for window placement and in the maximize command. EWMHIgnoreStrutHints causes fvwm
to ignore such hints, as EWMHUseStrutHints, causes fvwm to use it which is the default.

EWMHIgnoreStateHints causes fvwm to ignore initial EWMH state hints when a new window is
mapped. The default EWMHUseStateHints causes fvwm to accept such hints.

EWMHIgnoreWindowType causes fvwm to ignore EWMH window type specification. The default
!EWMHIgnoreWindowType causes fvwm to style windows of specified types as such.

EWMHMaximizeIgnoreWorkingArea causes fvwm to ignore the EWMH working area when it
executes a Maximize command. With EWMHMaximizeUseWorkingArea the EWMH working
area is used as with EWMHMaximizeUseDynamicWorkingArea the EWMH dynamic working area
is used (the default).

EWMHPlacementIgnoreWorkingArea causes fvwm to ignore the EWMH working area when it
places (or places again) a window. With EWMHPlacementUseWorkingArea the EWMH working
area is taken in account as with EWMHPlacementUseDynamicWorkingArea the EWMH dynamic
working area is taken in account (the default). Note that with the MinOverlapPlacement and
MinOverlapPercentPlacement placement policy, the way the EWMH (dynamic) working area is
taken in account is configurable with the MinOverlapPlacementPenalties style.

Miscellaneous
The BackingStore, BackingStoreOff and BackingStoreWindowDefault determine if the X server
uses backing store for the window or not. BackingStore means that the X server tries to keep the
obscured parts of a window in memory. This is usually slower if the client runs on the same
machine as the X server, but can be much faster if the connection is slow (see also SaveUnder
below). BackingStoreOff disables backing store for the window. By default, fvwm does not
enable or disable backing store itself but leaves is as the window requested it. To revert back to
the application’s choice, use the BackingStoreWindowDefault style.

Note: This style is useless if the X server does not allow backing store.

SaveUnder enables the corresponding window attribute in the X server. For a window using this

05-Sep-2019 83

FVWM(1) Fvwm 2.6.9 FVWM(1)

style, the X server tries to store the graphics below it in memory which is usually slower if the
client runs on the same machine as the X server. SaveUnder may speed up fvwm if the connection
to the X server is slow (e.g. over a modem link). To disable save under, use the SaveUnderOff
style. This is the default. See also BackingStore above.

Note: This style is useless if the X server does not allow save under.

ParentalRelativity enables clients that use a background pixmap of type ParentRelative to achieve
transparency. Fvwm modules that support transparent colorsets require this setting. Opacity is the
default and should be used for all non-transparent clients for better performance.

MwmDecor makes fvwm attempt to recognize and respect the mwm decoration hints that
applications occasionally use. To switch this style off, use the NoDecorHint style.

MwmFunctions makes fvwm attempt to recognize and respect the mwm prohibited operations
hints that applications occasionally use. HintOverride makes fvwm shade out operations that
mwm would prohibit, but it lets you perform the operation anyway. NoFuncHint allows turns off
the mwm hints completely.

OLDecor makes fvwm attempt to recognize and respect the olwm and olvwm hints that many
older XView and OLIT applications use. Switch this option off with NoOLDecor.

With GNOMEIgnoreHints fvwm ignores all GNOME hints for the window, even if GNOME
compliance is compiled in. This is useful for those pesky applications that try to be more clever
than the user and use GNOME hints to force the window manager to ignore the user’s preferences.
The GNOMEUseHints style switches back to the default behavior.

UseDecor This style is deprecated and will be removed in the future. There are plans to replace it
with a more flexible solution in fvwm-3.0.

UseDecor accepts one argument: the name of a decor created with AddToDecor. If no decor
name is specified, the "Default" decor is used. Windows do not actually contain decors, but are
always assigned to one. If the decor is later modified with AddToDecor, the changes are visible
for all windows which are assigned to it. The decor for a window can be reassigned with
ChangeDecor.

UseStyle This style is deprecated and will be removed in the future. There are plans to replace it
with a more flexible solution in fvwm-3.0.

UseStyle takes one arg, which is the name of another style. That way you can have unrelated
window names easily inherit similar traits without retyping. For example:

Style rxvt UseStyle XTerm

Warning: If a style is built from one or more parent styles and the parent styles are changed, the
derived style is not modified. To achieve this you have to issue the UseStyle line again.

Unmanaged Windows with the Unmanaged style option are ignored by fvwm. They are not
decorated, can not be moved or resized, etc. You probably want to use Bugopts
RaiseOverUnmanaged too. This option can be turned off with the !Unmanaged style. However,
windows that are already ignored at the time when the option is set must be recaptured with the
Recapture command in order to become managed.

State sets the initial value of one of the 32 user defined states which are associated with each
window. The state number ranges from 0 to 31 and must be given as an argument. The states have
no meaning in fvwm, but they can be checked in conditional commands like Next with the State
condition and manipulated with the State command.

turn on state 11 for xterms ...
Style xterm State 11
... but not for rxvts.
Style rxvt !State 11

05-Sep-2019 84

FVWM(1) Fvwm 2.6.9 FVWM(1)

Windows with the WindowListSkip styles do not appear in the menu that is created with the
WindowList command or the lists shown in modules like FvwmIconMan. In the modules, the
style can usually be ignored with an option. Please refer to the man page of the module in
question for further information. To disable this feature, use the default style WindowListHit.

The styles CirculateSkip and CirculateHit control whether the window is considered by
conditional commands, for example Next, Prev or All. Windows with CirculateSkip, are never
selected by conditional commands. However, the styles can be overridden explicitly in the
condition with the CirculateHit, CirculateHitIcon or CirculateHitShaded conditions, and some
conditional commands, e.g. Current and All, do this by default. The styles CirculateSkipIcon,
CirculateHitIcon, CirculateSkipShaded and CirculateHitShaded work like CirculateSkip and
CirculateHit but apply only to iconic or shaded windows. Note: if multiple ...Skip... options are
combined, windows are only selected if they match none of the given conditions. So, with

Style * CirculateSkipIcon, CirculateSkipShaded

only windows that are neither iconic nor shaded are selected. Note: For historical reasons, the
conditional commands understand the names of these styles as condition names. Take care not to
confuse them.

Examples

Change default fvwm behavior to no title-
bars on windows! Also define a default icon.
Style * !Title, \

Icon unknown1.xpm, \
BorderWidth 4, \
HandleWidth 5

now, window specific changes:
Style Fvwm* !Handles, Sticky, \

WindowListSkip, \
BorderWidth 0

Style FvwmPager StaysOnTop, BorderWidth 0
Style *lock !Handles, Sticky, \

StaysOnTop, WindowListSkip
Style xbiff Sticky, WindowListSkip
Style FvwmButtons !Handles, Sticky, \

WindowListSkip
Style sxpm !Handles

Put title-bars back on xterms only!
Style xterm Title, Color black/grey

Style rxvt Icon term.xpm
Style xterm Icon rterm.xpm
Style xcalc Icon xcalc.xpm
Style xbiff Icon mail1.xpm
Style xmh Icon mail1.xpm, \

StartsOnDesk 2
Style xman Icon xman.xpm
Style matlab Icon math4.xpm, \

StartsOnDesk 3
Style xmag Icon magnifying_glass2.xpm
Style xgraph Icon graphs.xpm
Style FvwmButtons Icon toolbox.xpm

05-Sep-2019 85

FVWM(1) Fvwm 2.6.9 FVWM(1)

Style Maker StartsOnDesk 1
Style signal StartsOnDesk 3

Fire up Netscape on the second desk, in the
middle of my 3x3 virtual desktop, and do not
bother me with it...
Style Netscape* SkipMapping, \

StartsOnPage 1 1 1

Note that all properties for a window are or’ed together. In the above example "FvwmPager" gets
the property StaysOnTop via an exact window name match but also gets !Handles, Sticky and
WindowListSkip by a match to "Fvwm*". It gets !Title by virtue of a match to "*". If conflicting
styles are specified for a window, then the last style specified is used.

WindowStyle options
sets attributes (styles) on the selected window. The options are exactly the same as for the Style
command.

Window Styles
AddButtonStyle button [state] [style] [-- [!]flag ...]

Adds a button style to button. button can be a button number, or one of "All", "Left" or "Right".
state can be "ActiveUp", "ActiveDown", "InactiveUp" or "InactiveDown", or "Active" (the same as
both "ActiveUp" and "ActiveDown") or "Inactive" (the same as both "InactiveUp" and
"InactiveDown") or any of these 6 with "Toggled" prepended. The "Active" states apply to the
focused window, the "Inactive" ones apply to all other windows. The "Up" states apply to the non
pressed buttons, the "Down" ones apply to pressed buttons. The "Toggled" prefix refers to
maximized, shaded or sticky windows that have the corresponding MwmDecor... button style set.
Additionally, the following shortcuts may be used: "AllNormal", "AllToggled", "AllActive",
"AllInactive", "AllUp", "AllDown". They are actually different masks for 4 individual states from
8 total. These are supported too: "AllActiveUp", "AllActiveDown", "AllInactiveUp",
"AllInactiveDown".

If state is omitted, then the style is added to every state. If the style and flags are enclosed in
parentheses, then multiple state definitions can be placed on a single line. Flags for additional
button styles cannot be changed after definition.

Buttons are drawn in the order of definition, beginning with the most recent button style, followed
by those added with AddButtonStyle. To clear the button style stack, change style flags, or for
descriptions of available styles and flags, see the ButtonStyle command. Examples:

ButtonStyle 1 Pixmap led.xpm -- Top Left
ButtonStyle 1 ActiveDown HGradient 8 grey black
ButtonStyle All -- UseTitleStyle
AddButtonStyle 1 \

ActiveUp (Pixmap a.xpm) \
ActiveDown (Pixmap b.xpm -- Top)

AddButtonStyle 1 Vector 4 50x30@1 70x70@0 30x70@0 50x30@1

Initially for this example all button states are set to a pixmap. The second line replaces the
"ActiveDown" state with a gradient (it overrides the pixmap assigned to it in the line before, which
assigned the same style to every state). Then, the UseTitleStyle flag is set for all buttons, which
causes fvwm to draw any styles set with TitleStyle before drawing the buttons. Finally,
AddButtonStyle is used to place additional pixmaps for both "ActiveUp" and "ActiveDown"
states and a vector button style is drawn on top of all states.

AddTitleStyle [state] [style] [-- [!]flag ...]
Adds a title style to the title-bar. state can be "ActiveUp", "ActiveDown", "InactiveUp" or
"InactiveDown", or "Active" (the same as both "ActiveUp" and "ActiveDown") or "Inactive" (the
same as both "InactiveUp" and "InactiveDown") or any of these 6 with "Toggled" prepended. If

05-Sep-2019 86

FVWM(1) Fvwm 2.6.9 FVWM(1)

state is omitted, then the style is added to every state. If the style and flags are enclosed in
parentheses, then multiple state definitions can be placed on a single line. This command is quite
similar to the AddButtonStyle command.

Title-bars are drawn in the order of definition, beginning with the most recent TitleStyle, followed
by those added with AddTitleStyle. To clear the title style stack, change style flags, or for the
descriptions of available styles and flags, see the TitleStyle and ButtonStyle commands.

AddToDecor decor
This command is deprecated and will be removed in the future. There are plans to replace it with
a more flexible solution in fvwm-3.0.

Add or divert commands to the decor named decor. A decor is a name given to the set of
commands which affect button styles, title-bar styles and border styles. If decor does not exist it
is created; otherwise the existing decor is modified. Note: Earlier versions allowed to use the
HilightColor, HilightColorset and WindowFont commands in decors. This is no longer
possible. Please use the Style command with the Hilight... and Font options.

New decors start out exactly like the "default" decor without any style definitions. A given decor
may be applied to a set of windows with the UseDecor option of the Style command. Modifying
an existing decor affects all windows which are currently assigned to it.

AddToDecor is similar in usage to the AddToMenu and AddToFunc commands, except that
menus and functions are replaced by ButtonStyle, AddButtonStyle, TitleStyle, AddTitleStyle
and BorderStyle commands. Decors created with AddToDecor can be manipulated with
ChangeDecor, DestroyDecor, UpdateDecor and the Style option.

The following example creates a decor "FlatDecor" and style "FlatStyle". They are distinct
entities:

AddToDecor FlatDecor
+ ButtonStyle All Active (-- flat) Inactive (-- flat)
+ TitleStyle -- flat
+ BorderStyle -- HiddenHandles NoInset

Style FlatStyle \
UseDecor FlatDecor, HandleWidth 4, ForeColor white, \
BackColor grey40, HilightFore black, HilightBack grey70

Style xterm UseStyle FlatStyle

An existing window’s decor may be reassigned with ChangeDecor. A decor can be destroyed
with DestroyDecor.

DestroyDecor FlatDecor
AddToDecor FlatDecor ...

Style FlatStyle UseDecor FlatDecor

and now apply the style again:

Style xterm UseStyle FlatStyle

BorderStyle state [style] [-- [!]flag ...]
Defines a border style for windows. state can be either "Active" or "Inactive". If state is omitted,
then the style is set for both states. If the style and flags are enclosed in parentheses, then multiple
state definitions can be specified per line.

style is a subset of the available button styles, and can only be TiledPixmap (uniform pixmaps
which match the bevel colors work best this way) or Colorset. If a ’!’ is prefixed to any flag, the

05-Sep-2019 87

FVWM(1) Fvwm 2.6.9 FVWM(1)

behavior is negated. If style is not specified, then one can change flags without resetting the style.

The HiddenHandles flag hides the corner handle dividing lines on windows with handles (this
option has no effect for !Handles windows). By default, HiddenHandles is disabled.

The NoInset flag supplements HiddenHandles. If given, the inner bevel around the window frame
is not drawn. If HiddenHandles is not specified, the frame looks a little strange.

Raised causes a raised relief pattern to be drawn (default). Sunk causes a sunken relief pattern to
be drawn. Flat inhibits the relief pattern from being drawn.

To decorate the active and inactive window borders with a textured pixmap, one might specify:

BorderStyle Active TiledPixmap marble.xpm
BorderStyle Inactive TiledPixmap granite.xpm
BorderStyle Active -- HiddenHandles NoInset

To clear the style for both states:

BorderStyle Simple

To clear for a single state:

BorderStyle Active Simple

To unset a flag for a given state:

BorderStyle Inactive -- !NoInset

title-bar buttons can inherit the border style with the UseBorderStyle flag (see ButtonStyle).

ButtonState [ActiveDown bool] [Inactive bool] [InactiveDown bool]
The ButtonState command controls which states of the window titles and title buttons are used.
The default is to use all four states: "ActiveUp", "ActiveDown", "InactiveUp" and "InactiveDown"
(see ButtonStyle and TitleStyle commands). The bool argument after the key word controls if the
designated state is used ("True") or not ("False"). The bool flag is the same as other commands,
and not limited to just "True" or "False"; "Yes" and "No" may also be used. The "ActiveUp" state
cannot be deactivated. If no arguments are provided or the given arguments are illegal, the default
is restored.

If ActiveDown argument is "False", no different button style for the pressed down buttons used,
instead "ActiveUp" state is used even when button is pressed.

If Inactive argument is "False", focused and unfocused windows look similarly, the corresponding
"Active" states are always used.

If InactiveDown argument is "False" (only applied when Inactive is "True"), the pressed titles and
title buttons in non-focused windows are drawn using "InactiveUp" or "ActiveUp" states
depending on the values of the other key words.

ButtonStyle button [state] [style] [-- [!]flag ...]
Sets the button style for a title-bar button. button is the title-bar button number between 0 and 9,
or one of "All", "Left", "Right", or "Reset". Button numbering is described in the Mouse command
section. If the style and flags are enclosed in parentheses, then multiple state definitions can be
specified per line.

state refers to which button state should be set. Button states are defined as follows: "ActiveUp"
and "ActiveDown" refer to the un-pressed and pressed states for buttons on active windows; while
the "InactiveUp" and "InactiveDown" states denote buttons on inactive windows. The shortcut
"Active" denotes both "ActiveUp" and "ActiveDown" states. Shortcut "Inactive" denotes both
"InactiveUp" and "InactiveDown" states. The similar state names like just described, but with the
"Toggled" prefix are used instead for title buttons which have one of the MwmDecorMax,
MwmDecorShade, MwmDecorStick or MwmDecorLayer hints, if the window is maximized,

05-Sep-2019 88

FVWM(1) Fvwm 2.6.9 FVWM(1)

shaded, sticky or placed on specific layer, respectively.

AddToDecor Default
+ ButtonStyle 6 \
Vector 4 50x25@1 85x75@0 15x75@0 50x25@1

+ ButtonStyle 6 ToggledActiveUp \
Vector 4 50x75@0 85x25@1 15x25@0 50x75@0

+ ButtonStyle 6 ToggledActiveDown \
Vector 4 50x75@0 85x25@1 15x25@0 50x75@0

+ ButtonStyle 6 ToggledInactive \
Vector 4 50x75@0 85x25@1 15x25@0 50x75@0

+ ButtonStyle 6 - MwmDecorShade
Mouse 0 6 N WindowShade

Additionally, the following shortcuts may be used: "AllNormal", "AllToggled", "AllActive",
"AllInactive", "AllUp", "AllDown". They are actually different masks for 4 individual states from
8 total. These are supported too: "AllActiveUp", "AllActiveDown", "AllInactiveUp",
"AllInactiveDown".

If state is specified, that particular button state is set. If state is omitted, every state is set.
Specifying a style destroys the current style (use AddButtonStyle to avoid this).

If style is omitted, then state-dependent flags can be set for the primary button style without
destroying the current style. Examples (each line should be considered independent):

ButtonStyle Left -- flat
ButtonStyle All ActiveUp (-- flat) Inactive (-- flat)

The first line sets every state of the left buttons to flat, while the second sets only the "ActiveUp"
and "Inactive" states of every button to flat (only flags are changed; the buttons’ individual styles
are not changed).

If you want to reset all buttons to their defaults:

ButtonStyle Reset

To reset the "ActiveUp" button state of button 1 to the default:

ButtonStyle 1 ActiveUp Default

To reset all button states of button 1 to the default of button number 2:

ButtonStyle 1 Default 2

For any button, multiple state definitions can be given on one line by enclosing the style and flags
in parentheses. If only one definition per line is given the parentheses can be omitted.

flags affect the specified state. If a ’!’ is prefixed to any flag, its behavior is negated. The
available state-dependent flags for all styles are described here (the ButtonStyle entry deals with
state-independent flags).

Raised causes a raised relief pattern to be drawn.

Sunk causes a sunken relief pattern to be drawn.

Flat inhibits the relief pattern from being drawn.

UseTitleStyle causes the given button state to render the current title style before rendering the
buttons’ own styles. The Raised, Flat and Sunk TitleStyle flags are ignored since they are
redundant in this context.

UseBorderStyle causes the button to inherit the decorated BorderStyle options.

05-Sep-2019 89

FVWM(1) Fvwm 2.6.9 FVWM(1)

Raised, Sunk and Flat are mutually exclusive, and can be specified for the initial ButtonStyle only.
UseTitleStyle and UseBorderStyle are also mutually exclusive (both can be off however). The
default is Raised with both UseBorderStyle and UseTitleStyle left unset.

Important
for the "ActiveDown" and "InactiveDown" states: When a button is pressed, the relief is inverted.
Because of this, to obtain the raised look in "ActiveDown" or "InactiveDown" states you must
specify the opposite of the desired relief (i.e. Sunk for "ActiveDown" or "InactiveDown"). This
behavior is consistent, but may seem confusing at first. The same applies to the "Toggled" states.

Button styles are classified as non-destructive, partially destructive, or fully destructive.
Non-destructive styles do not affect the image. Partially destructive styles can obscure some or all
parts of the underlying image (i.e. Pixmap). Fully destructive styles obscure the entire underlying
image (i.e. Solid or one of the gradient styles). Thus, if stacking styles with AddButtonStyle (or
AddTitleStyle for title-bars), use care in sequencing styles to minimize redraw.

The available styles are:

Simple, Default, Solid, Colorset, Vector, ?Gradient, Pixmap, AdjustedPixmap, ShrunkPixmap,
StretchedPixmap, TiledPixmap, MiniIcon

The description of these styles and their arguments follow:

The Simple style does nothing. There are no arguments, and this style is an example of a
non-destructive button style.

The Default style conditionally accepts one argument: a number which specifies the default button
number to load. If the style command given is ButtonStyle or AddButtonStyle, the argument is
optional (if given, it overrides the current button). If a command other than ButtonStyle or
AddButtonStyle is used, the number must be specified.

The Solid style fills the button with a solid color. The relief border color is not affected. The color
is specified as a single argument. This style is fully destructive.

The Colorset cs [alpha] style fills the button with the Colorset cs. The optional alpha argument is
a percentage between 0 and 100. It causes fvwm to merge the colorset background onto the button
using this percentage. If the percentage is 0 the colorset background is hidden and if it is 100 the
colorset background is fully applied. The default is 100. So, the destructiveness depends on the
alpha argument.

The Vector num X[offsetp]xY[offsetp]@C ... style draws a line pattern. Since this is a standard
button style, the keyword Vector is optional, num is a number of point specifications of the form
X[offsetp]xY[offsetp]@C ... X and Y are point coordinates inside the button, given in percents
(from 0 to 100). An optional absolute offset in pixels, can be given as "+<offset>p" for a positive
or "-<offset>p" for a negative offset.

C specifies a line color (0 - the shadow color, 1 - the highlight color, 2 - the background color, 3
- the foreground color, 4 - only move the point, do not draw). The first point color is not used.
You can use up to 10000 points in a line pattern. This style is partially destructive.

The specification is a little cumbersome:

ButtonStyle 2 Vector 4 50x30@1 70x70@0 30x70@0 50x30@1

then the button 2 decoration uses a 4-point pattern consisting of a line from (x=50,y=30) to
(70,70) in the shadow color (@0), and then to (30,70) in the shadow color, and finally to (50,30) in
the highlight color (@1). Is that too confusing? See the fvwm web pages for some examples with
screenshots.

A more complex example of Vector:

ButtonStyle 8 Vector 10 45x65@2 45x75@3 \

05-Sep-2019 90

FVWM(1) Fvwm 2.6.9 FVWM(1)

20x75@3 20x50@3 35x50@3 35x65@1 35x25@1 \
75x25@1 75x65@0 35x65@0

ButtonStyle 0 Vector 10 45x65@2 45x75@0 \
20x75@0 20x50@1 45x50@1 45x65@0 75x65@3 \
75x25@3 35x25@3 35x47@3

The ?Gradient styles denote color gradients. Fill in the question mark with any one of the defined
gradient types. Please refer to the Color Gradients section for a description of the gradient
syntax. The gradient styles are fully destructive.

The Pixmap style displays a pixmap. A pixmap should be specified as an argument. For example,
the following would give button number 2 the same pixmap for all 4 states (2 active and 2
inactive), and button number 4 all different pixmaps.

ButtonStyle 2 Pixmap my_pixmap.xpm
ButtonStyle 4 \

ActiveUp (Pixmap activeup.xpm) \
ActiveDown (Pixmap activedown.xpm) \
Inactive (Pixmap inactiveup.xpm)

ButtonStyle 4 \
InactiveDown Pixmap inactivedown.xpm

The pixmap specification can be given as an absolute or relative pathname (see ImagePath). If
the pixmap cannot be found, the button style reverts to Simple. Flags specific to the Pixmap style
are Left, Right, Top, and Bottom. These can be used to justify the pixmap (default is centered for
both directions). Pixmap transparency is used for the color "None." This style is partially
destructive.

The AdjustedPixmap style is similar to the Pixmap style. But the image is resized to exactly fit the
button.

The ShrunkPixmap style is similar to the Pixmap style. But if the image is bigger than the button
the image is resized to fit into the button.

The StretchedPixmap style is similar to the Pixmap style. But if the image is smaller than the
button the image is resized to cover the button.

The TiledPixmap style accepts a pixmap to be tiled as the button background. One pixmap is
specified as an argument. Pixmap transparency is not used. This style is fully destructive.

The MiniIcon style draws the window’s miniature icon in the button, which is specified with the
MiniIcon option of the Style command. This button style accepts no arguments. Example:

Style * MiniIcon mini-bx2.xpm
Style xterm MiniIcon mini-term.xpm
Style Emacs MiniIcon mini-doc.xpm

ButtonStyle 1 MiniIcon

ButtonStyle button - [!]flag ...
Sets state-independent flags for the specified button. State-independent flags affect button
behavior. Each flag is separated by a space. If a ’!’ is prefixed to the flag then the behavior is
negated. The special flag Clear clears any existing flags.

The following flags are usually used to tell fvwm which buttons should be affected by mwm
function hints (see MwmFunctions option of the Style command. This is not done automatically
since you might have buttons bound to complex functions, for instance.

MwmDecorMenu should be assigned to title-bar buttons which display a menu. The default
assignment is the leftmost button. When a window with the MwmFunctions Style option requests
not to show this button, it is hidden.

05-Sep-2019 91

FVWM(1) Fvwm 2.6.9 FVWM(1)

MwmDecorMin should be assigned to title-bar buttons which minimize or iconify the window.
The default assignment is the second button over from the rightmost button. When a window with
the MwmFunctions Style option requests not to show this button, it is hidden.

MwmDecorMax should be assigned to title-bar buttons which maximize the window. The default
assignment is the rightmost button. When a window with the MwmFunctions Style option
requests not to show this button, it is hidden. When the window is maximized, the vector pattern
on the button looks pressed in.

MwmDecorShade should be assigned to title-bar buttons which shade the window (see
WindowShade command). When the window is shaded, the vector pattern on the button looks
pressed in.

MwmDecorStick should be assigned to title-bar buttons which make the window sticky. When the
window is sticky, the vector pattern on the button looks pressed in.

The flag MwmDecorLayer layer should be assigned to title-bar buttons which place the window in
the layer numbered layer. When the window is on that specific layer, the vector pattern on the
button looks pressed in.

ChangeDecor decor
This command is deprecated and will be removed in the future. There are plans to replace it with
a more flexible solution in fvwm-3.0.

Changes the decor of a window to decor. decor is "Default" or the name of a decor defined with
AddToDecor. If decor is invalid, nothing occurs. If called from somewhere in a window or its
border, then that window is affected. If called from the root window the user is allowed to select
the target window. ChangeDecor only affects attributes which can be set using the AddToDecor
command.

ChangeDecor CustomDecor1

DestroyDecor [recreate] decor
This command is deprecated and will be removed in the future. There are plans to replace it with
a more flexible solution in fvwm-3.0.

Deletes the decor defined with AddToDecor, so that subsequent references to it are no longer
valid. Windows using this decor revert to the "Default" decor. The optional parameter recreate
tells fvwm not to throw away the decor completely but to throw away only its contents. If the
decor is created again later, windows do not use it before the UseDecor style is applied again
unless the decor was destroyed with the recreate option. The decor named "Default" cannot be
destroyed.

DestroyDecor CustomDecor1

TitleStyle [justification] [Height [num]] [MinHeight [num]]
Sets attributes for the title-bar. Justifications can be Centered, RightJustified or LeftJustified.
Height sets the title bar’s height to an amount in pixels. MinHeight sets the minimal height in
pixels of the title bar. Defaults are Centered, the window’s font height and no minimal height. To
reset the font height to the default value, omit the num argument after the Height keyword. The
MinHeight height is reset by Height or if given with no argument. Example:

TitleStyle LeftJustified Height 24

TitleStyle [state] [style] [-- [!]flag ...]
Sets the style for the title-bar. See also AddTitleStyle and ButtonStyle state can be one of
"ActiveUp", "ActiveDown", "InactiveUp", or "InactiveDown". Shortcuts like "Active" and
"Inactive" are allowed. The states with the "Toggled" prefix are allowed too, the title itself does
not use "Toggled" states, but these states are used for the buttons with ButtonStyle UseTitleStyle.
If state is omitted, then the style is added to every state. If parentheses are placed around the style

05-Sep-2019 92

FVWM(1) Fvwm 2.6.9 FVWM(1)

and flags, then multiple state definitions can be given per line. style can be omitted so that flags
can be set while not destroying the current style.

If a ’!’ is prefixed to any flag, its behavior is negated. Valid flags for each state include Raised,
Flat and Sunk (these are mutually exclusive). The default is Raised. See the note in ButtonStyle
regarding the "ActiveDown" state. Examples:

TitleStyle ActiveUp HGradient 16 navy black
TitleStyle \

ActiveDown (Solid red -- flat) \
Inactive (TiledPixmap wood.xpm)

TitleStyle \
ActiveUp (-- Flat) \
ActiveDown (-- Raised) \
InactiveUp (-- Flat) \
InactiveDown (-- Sunk)

This sets the "ActiveUp" state to a horizontal gradient, the "ActiveDown" state to solid red, and
the "Inactive" states to a tiled wood pixmap. Finally, "ActiveUp" and "InactiveUp" are set to look
flat, while "ActiveDown" set to be sunk (the Raised flag for the "ActiveDown" state causes it to
appear sunk due to relief inversion), and "InactiveDown" is set to look raised. An example which
sets flags for all states:

TitleStyle -- flat

For a flattened look:

TitleStyle -- flat
ButtonStyle All Active (-- flat) Inactive (-- flat)

TitleStyle accepts all the ButtonStyle styles and arguments:

Simple, Default, Solid, Colorset, Vector, ?Gradient, Pixmap, AdjustedPixmap, ShrunkPixmap,
StretchedPixmap, TiledPixmap, MiniIcon.

See the ButtonStyle command for a description of all these styles and their arguments.

In addition to these styles TitleStyle accepts a powerful MultiPixmap option. This allows you to
specify different pixmaps, colorsets or colors for different parts of the titlebar. Some of them are
tiled or stretched to fit a particular space; others are discrete "transition" images. The definable
sections are:

Main
The full titlebar

LeftMain
Left of title text

RightMain
Right of title text

UnderText
Underneath title text

LeftOfText
just to the left of the title text

RightOfText
just to the right of the title text

LeftEnd
at the far left end of the titlebar (just after left buttons if any)

05-Sep-2019 93

FVWM(1) Fvwm 2.6.9 FVWM(1)

RightEnd
at the far right end of the titlebar (just before right buttons if any)

Buttons
under buttons in case of UseTitleStyle

LeftButtons
under left buttons in case of UseTitleStyle

RightButtons
under right buttons in case of UseTitleStyle

None of these are mandatory except for Main (or, if you do not define Main you must define both
LeftMain and RightMain). If no Buttons pixmaps are defined and UseTitleStyle is specified for one
or more buttons, Main, LeftMain or RightMain are used as appropriate.

The syntax for this style type is:

MultiPixmap section style arg, ...

continuing for whatever you want to define. The style can be either TiledPixmap, AdjustedPixmap,
Colorset or Solid. See the ButtonStyle command for the description of these styles. In the case of
a transition section, LeftEnd, LeftOfText, RightOfText or RightEnd, AdjustedPixmap only resize the
pixmap in the "y" direction. For the Colorset and Solid styles a width of the half of the title bar
height is assumed for the transition sections.

An example:

MultiPixmap Main AdjustedPixmap foo.xpm, \
UnderText TiledPixmap bar.xpm, \
Buttons Colorset 2

Note that the old syntax is still supported: if the style is omitted, TiledPixmap is assumed and
adding "(stretched)" between the section and the file name implies AdjustedPixmap.

UpdateDecor [decor]
This command is deprecated and will be removed in the future. There are plans to replace it with
a more flexible solution in fvwm-3.0.

This command is kept mainly for backward compatibility. Since all elements of a decor are
updated immediately when they are changed, this command is mostly useless.

Updates window decorations. decor is an optional argument which specifies the decor to update.
If given, only windows which are assigned to that particular decor are updated. This command is
useful, for instance, after a ButtonStyle, TitleStyle or BorderStyle (possibly used in conjunction
with AddToDecor). Specifying an invalid decor results in all windows being updated. This
command is less disturbing than Recapture, but does not affect window style options as
Recapture does.

Controlling the Virtual Desktop
Desk arg1 [arg2] [min max]

This command has been renamed. Please see GotoDesk command.

DesktopName desk name
Defines the name of the desktop number desk to name. This name is used in the WindowList
command and in the FvwmPager where it override the Label configuration option. Moreover, if
consecutive names starting from desktop 0 are defined, then these names can be used by any
EWMH compliant application (as a pager).

DesktopSize HorizontalxVertical
Defines the virtual desktop size in units of the physical screen size.

05-Sep-2019 94

FVWM(1) Fvwm 2.6.9 FVWM(1)

EdgeResistance delayEdgeResistance scrolling moving [xinerama-scrolling]
Tells how hard it should be to change the desktop viewport by moving the mouse over the edge of
the screen. The parameter tells how many milliseconds the pointer must spend on the screen edge
before fvwm moves the viewport. This is intended for people who use

EdgeScroll 100 100

but find themselves accidentally flipping pages when they do not want to. If -1 is given as the
delay, scrolling is disabled completely.

The second form of invocation with two or three arguments is obsolete and should be replaced
with the following three commands as needed:

EdgeResistance scrolling
Style * EdgeMoveDelay scrolling
Style * EdgeMoveResistance moving
or
Style * EdgeMoveResistance moving xinerama-scrolling

Fvwm does this substitution automatically and prints a warning.

EdgeScroll horizontal[p] vertical[p] [wrap | wrapx | wrapy]
Specifies the percentage of a page to scroll when the cursor hits the edge of a page. A trailing ’p’
changes the interpretation to mean pixels. If you do not want any paging or scrolling when you hit
the edge of a page include

EdgeScroll 0 0

in your config file, or possibly better, set the EdgeThickness to zero. See the EdgeThickness
command. If you want whole pages, use

EdgeScroll 100 100

Both horizontal and vertical should be positive numbers.

If the horizontal and vertical percentages are multiplied by 1000 or one of the keywords wrap,
wrapx and wrapy is given then scrolling wraps around at the edge of the desktop. If

EdgeScroll 100000 100000

is used fvwm scrolls by whole pages, wrapping around at the edge of the desktop.

EdgeThickness 0 | 1 | 2
This is the width or height of the invisible window that fvwm creates on the edges of the screen
that are used for the edge scrolling feature.

In order to enable page scrolling via the mouse, four windows called the "pan frames" are placed
at the very edge of the screen. This is how fvwm detects the mouse’s presence at the window
edge. Because of the way this works, they need to be at the top of the stack and eat mouse events,
so if you have any kind of error along the lines of: "mouse clicks at the edge of the screen do the
wrong thing" you’re having trouble with the pan frames and (assuming you do not use the mouse
to flip between pages) should set the EdgeThickness to 0.

A value of 0 completely disables mouse edge scrolling, even while dragging a window. 1 gives
the smallest pan frames, which seem to work best except on some servers.

2 is the default.

Pan frames of 1 or 2 pixels can sometimes be confusing, for example, if you drag a window over
the edge of the screen, so that it straddles a pan frame, clicks on the window, near the edge of the
screen are treated as clicks on the root window.

05-Sep-2019 95

FVWM(1) Fvwm 2.6.9 FVWM(1)

EwmhBaseStruts left right top bottom
Where left, right, top and bottom are positive or null integers which define bands at the edge of the
screen. left defines a band on the left of your screen of width left, right defines a band on the right
of your screen of width right, top defines a band on the top of your screen of height top and bottom
defines a band on the bottom of your screen of height bottom. The unit is the pixel and the default
is 0 0 0 0. These areas define additional reserved space to the reserved space defined by some
ewmh compliant applications. This is used to compute the Working Area. See the Extended
Window Manager Hints section for a definition of the Working Area.

EwmhNumberOfDesktops num [max]
This command is useful only for an ewmh compliant pager or taskbar (as kpager or kicker taskbar)
and not for fvwm modules (FvwmPager or FvwmIconMan). It causes a compliant application
to consider at least num desktops (desktop 0 to desktop num-1). The optional argument max
causes a compliant application to never consider more than max desktops. If max is 0 (the default)
there is no limitation. The actual number of desktops is determined dynamically. It is at least
num, but it can be d if there is a window on desktop d-1 (or if the current desktop is desktop d-1)
and d is less or equal to max or max is null. Moreover, a compliant pager can ask to change num
itself. This is accepted by fvwm only if this number is less than or equal to max or if max is null.
Note that negative desktops are not supported by the ewmh specification. The default is 4 0.

GotoDesk [prev | arg1 [arg2] [min max]]
Switches the current viewport to another desktop (workspace, room).

The command takes 1, 2, 3, or 4 arguments. A single argument is interpreted as a relative desk
number. Two arguments are understood as a relative and an absolute desk number. Three
arguments specify a relative desk and the minimum and maximum of the allowable range. Four
arguments specify the relative, absolute, minimum and maximum values. (Desktop numbers can
be negative). If a literal prev is given as the single argument, the last visited desk number is used.

If arg1 is non zero then the next desktop number is the current desktop number plus arg1.

If arg1 is zero then the new desktop number is arg2. (If arg2 is not present, then the command has
no effect.)

If min and max are given, the new desktop number is no smaller than min and no bigger than max.
Values out of this range are truncated (if you gave an absolute desk number) or wrapped around (if
you gave a relative desk number).

The syntax is the same as for MoveToDesk, which moves a window to a different desktop.

The number of active desktops is determined dynamically. Only desktops which contain windows
or are currently being displayed are active. Desktop numbers must be between 2147483647 and
-2147483648 (is that enough?).

GotoDeskAndPage prev | desk xpage ypage
Switches the current viewport to another desktop and page, similar to the GotoDesk and
GotoPage commands. The new desk is desk and the new page is (xpage,ypage).

GotoPage prev | [options] x[p] y[p]
Moves the desktop viewport to page (x,y). The upper left page is (0,0), the upper right is (M,0),
where M is one less than the current number of horizontal pages specified in the DesktopSize
command. The lower left page is (0,N), and the lower right page is (M,N), where N is the
desktop’s vertical size as specified in the DesktopSize command. To switch to a page relative to
the current one add a trailing ’p’ after any or both numerical arguments.

Possible options are wrapx and wrapy to wrap around the x or y coordinate when the viewport is
moved beyond the border of the desktop.

To go to the last visited page use prev as the first argument. The GotoPage function should not be
used in a pop-up menu.

Examples:

05-Sep-2019 96

FVWM(1) Fvwm 2.6.9 FVWM(1)

Go to page (2,3)
GotoPage 2 3

Go to lowest and rightmost page
GotoPage -1 -1

Go to last page visited
GotoPage prev

Go two pages to the right and one page up
GotoPage +2p -1p

Scroll [horizonal[p] vertical[p] | reverse]
Scrolls the virtual desktop’s viewport by horizontal pages in the x-direction and vertical pages in
the y-direction or starts interactive scrolling of the viewport. Either or both entries may be
negative. Both horizontal and vertical values are expressed in percent of pages, so

Scroll 100 100

means to scroll down and right by one full page.

Scroll 50 25

means to scroll right half a page and down a quarter of a page. The Scroll function should not be
called from pop-up menus. Normally, scrolling stops at the edge of the desktop.

If the horizontal and vertical percentages are 100 or more and are multiplied by 1000 then
scrolling wraps around at the edge of the desktop. If

Scroll 100000 0

is executed over and over fvwm moves to the next desktop page on each execution and wraps
around at the edge of the desktop, so that every page is hit in turn.

If the letter ’p’ is appended to each coordinate (horizontal and/or vertical), then the scroll amount
is measured in pixels.

Without arguments or if the option reverse is given interactive scrolling takes place. The viewport
scrolls as the mouse is moved. With the reverse option scrolling is done in opposite direction of
the mouse movement, and without it scrolling in the same direction as the mouse.

The binding

Mouse 1 A CM Scroll reverse

gives an effect of grabbing and dragging the viewport with button 1 if Control and Meta is pressed.

Xinerama [bool]
Enables Xinerama support if the boolean argument is true and disables it if the argument is false.
Calling this command without arguments turns on Xinerama support if it was disabled before and
turns it off if it was enabled. For example:

Turn Xinerama support on, use primary screen 2
XineramaPrimaryScreen 2
Xinerama on
Turn it off again
Xinerama off

XineramaPrimaryScreen [primary-screen]
Takes an integer number or ’g’ or ’c’ as its argument. A number is taken as the number of the
Xinerama screen that is to be used as the primary screen. The primary screen can be used as the

05-Sep-2019 97

FVWM(1) Fvwm 2.6.9 FVWM(1)

preferred screen to place windows with

XineramaPrimaryScreen <screen number>
Style * StartsOnScreen p

The primary screen is used in some of the modules and for the default icon box too. Any number
that is zero or more is taken as the primary screen’s number. Instead, the letter ’c’ indicates to use
the current screen (containing the pointer) whenever the primary screen is used. This may be very
confusing under some circumstances. With ’g’, the global screen is used as the primary screen,
effectively disabling the primary screen. Calling this function with any other argument (including
none) resets the primary screen to 0.

XineramaSls [bool]
For multi-screen implementations other than Xinerama, such as Single Logical Screen, it is
possible to simulate a Xinerama configuration if the total screen seen by fvwm is made up of equal
sized monitors in a rectangular grid. The XineramaSls command turns SLS support on or off or
toggles it to the opposite state, depending on if the boolean argument is "True", "False" or
"toggle". If no argument is given, this is treated like "toggle". The default layout uses one by one
screens. To configure the layout, use the XineramaSlsSize or XineramaSlsScreens command.

XineramaSlsSize Horizontal Vertical
This command configures the layout of the Single Logical screen feature. It takes two arguments,
Horizontal and Vertical which must be an integer value dividing evenly into the total desktop
width, and height. For an example with two monitors side by side which appear as one screen
through the X-Server with the right screen as the primary screen, use:

XineramaSlsSize 2x1
XineramaSls On
XineramaPrimaryScreen 1
Xinerama On

XineramaSlsScreens number-of-screens [screen-spec ...]
This command configures the layout of the Single Logical screen feature. Its first argument is the
number of screens to use. It must be followed by exactly this number of screen-spec arguments.
Each of these can be written either in standard X geometry format:
"<width>x<height>+<x>+<y>" or as a space separated list of numbers: "x y width height". Both
ways of describing screens can be mixed in a single command. All four numbers must be
supplied. The x and y values specify the origin of the screen in relation to the global screen’s
origin while width and height specify the size of the screen in pixels. No checks are done if the
geometries make sense, so it is possible to define overlapping screens (with random results) or
screens that are not visible at all.

XineramaSlsScreens 3 \
512x768+0+0 512x300+512+0 512 300 512 468

XineramaSls On
XineramaPrimaryScreen 1
Xinerama On

User Functions and Shell Commands
AddToFunc [name [I | J | M | C | H | D action]]

Begins or adds to a function definition. Here is an example:

AddToFunc Move-or-Raise I Raise
+ M Move
+ D Lower

The function name is "Move-or-Raise", and it could be invoked from a menu or a mouse binding
or key binding:

05-Sep-2019 98

FVWM(1) Fvwm 2.6.9 FVWM(1)

Mouse 1 TS A Move-or-Raise

The name must not contain embedded whitespace. No guarantees are made whether function
names with embedded whitespace work or not. This behavior may also change in the future
without further notice. The letter before the action tells what kind of action triggers the command
which follows it. ’I’ stands for "Immediate", and is executed as soon as the function is invoked.
’J’ is similar to "Immediate" but is delayed until a button is pressed or released or the pointer is
moved, or the function completes. It is always executed before the other function actions. ’M’
stands for "Motion", i.e. if the user starts moving the mouse. ’C’ stands for "Click", i.e., if the user
presses and releases the mouse button. ’H’ stands for "Hold", i.e. if the user presses a mouse
button and holds it down for more than ClickTime milliseconds. ’D’ stands for "Double-click".
The action ’I’ causes an action to be performed on the button-press, if the function is invoked with
prior knowledge of which window to act on.

There is a number of predefined symbols that are replaced by certain values if they appear on the
command line. Please refer to the Command Expansion section for details.

Warning
Please read the comments on executing complex functions in the section Scripting and Complex
Functions.

Examples:

If you call

Key F10 R A Function MailFunction xmh "-font fixed"

and "MailFunction" is

AddToFunc MailFunction
+ I Next ($0) Iconify off
+ I Next (AcceptsFocus, $0) Focus
+ I None ($0) Exec exec $0 $1

Then the last line of the function becomes

+ I None (xmh) Exec exec xmh -font fixed

The expansion is performed as the function is executed, so you can use the same function with all
sorts of different arguments. You could use

Key F11 R A Function MailFunction zmail "-bg pink"

in the same config, if you wanted. An example of using "$[w.id]" is:

AddToFunc PrintFunction
+ I Raise
+ I Exec xdpr -id $[w.id]

Note that "$$" is expanded to ’$’.

Another example: bind right mouse button within the window button number 6 (this is a minimize
button for the win95 theme) to iconify all windows of the same resource:

AddToFunc FuncIconifySameResource "I" All ($0) Iconify on
Mouse 3 6 A FuncIconifySameResource $[w.resource]

Beep
As might be expected, this makes the terminal beep.

05-Sep-2019 99

FVWM(1) Fvwm 2.6.9 FVWM(1)

DestroyFunc function
Deletes a function, so that subsequent references to it are no longer valid. You can use this to
change the contents of a function during a fvwm session. The function can be rebuilt using
AddToFunc.

DestroyFunc PrintFunction

Echo string
Prints a message to stderr. Potentially useful for debugging things in your config.

Echo Beginning style definitions...

EchoFuncDefinition function
The EchoFuncDefinition is similar to the Echo command but prints the definition for the given
function to stderr. It is useful to find out how fvwm handles quoting and for debugging functions

Exec command
Executes command. You should not use an ampersand ’&’ at the end of the command. You
probably want to use an additional "exec" at the beginning of command. Without that, the shell
that fvwm invokes to run your command stays until the command exits. In effect, you’ll have
twice as many processes running as you need. Note that some shells are smart enough to avoid
this, but it never hurts to include the "exec" anyway.

The following example binds function key F1 in the root window, with no modifiers, to the exec
function. The program rxvt is started with an assortment of options.

Key F1 R N Exec exec rxvt -fg yellow -bg blue \
-e /bin/tcsh

Note that this function doesn’t wait for command to complete, so things like:

Exec "echo AddToMenu ... > /tmp/file"
Read /tmp/file

do not work reliably (see the PipeRead command).

ExecUseShell [shell]
Makes the Exec command use the specified shell, or the value of the $SHELL environment
variable if no shell is specified, instead of the default Bourne shell (/bin/sh).

ExecUseShell
ExecUseShell /usr/local/bin/tcsh

Function FunctionName
Used to bind a previously defined function to a key or mouse button. The following example
binds mouse button 1 to a function called "Move-or-Raise", whose definition was provided as an
example earlier in this man page. After performing this binding fvwm executes the
"move-or-raise" function whenever button 1 is pressed in a window’s title-bar.

Mouse 1 T A Function Move-or-Raise

The keyword Function may be omitted if FunctionName does not coincide with an fvwm
command.

Warning: Please read the comments on executing complex functions in the section Scripting and
Complex Functions.

InfoStoreAdd key value
Stores the value at the given key. This is useful to store generic information used in the lifetime of
an fvwm config file. For example storing program preferences for opening video files.

The purpose of this command is to store internal information to fvwm which can be used bu fvwm

05-Sep-2019 100

FVWM(1) Fvwm 2.6.9 FVWM(1)

functions, or when opening programs of a certain type. Previous to this command the only way to
do this was via SetEnv but this is discouraged because it places such information in the
environment, which pollutes it and makes the information global to other processes started by
fvwm which may then modify them which might not be what’s wanted. Hence the point of
InfoStoreAdd is to still allow for such information to be stored, but kept internal to fvwm.

In this way, one can build up as many key/value pairs as needed. Recalling the value of a given
key happens through fvwm’s usual expansion mechanism. See the Command Expansion section
for more details. For example:

InfoStoreAdd teddybearprog xteddy

Echo the value of teddybearprog
Echo $[infostore.teddybearprog]

Removing an entry from the InfoStore is done with the InfoStoreRemove command.

InfoStoreRemove key
Removes an entry at the given key from the InfoStore. Example:

InfoStoreRemove teddybearprog

Nop
Does nothing. This is used to insert a blank line or separator in a menu. If the menu item
specification is

AddToMenu MyMenu " " Nop

then a blank line is inserted. If it looks like

+ "" Nop

then a separator line is inserted. Can also be used as the double-click action for Menu or Popup.

PipeRead command [quiet]
Causes fvwm to read commands from the output of the command. This command is executed by
/bin/sh as if you typed it on the command line. If the command consists of more than one word it
must be quoted. Useful for building up dynamic menu entries based on a directories contents, for
example. If the keyword Quiet follows the command no message is produced if the command is
not found.

Example:

AddToMenu HomeDirMenu
PipeRead ’for i in $HOME/*; \
do echo "+ $i Exec xterm -e vi $i"; done’

Note: The PipeRead changes the pointer to a watch cursor by default during execution. However,
some commands, for example xwd, need to take control of the pointer themselves and do not
work. To disable the watch cursor, use the command prior to PipeRead

BusyCursor Read off

The PipeRead command executes synchronously. If you want to Exec something, but need the
command to run synchronously, you might do something like:

PipeRead ’command 1>&2’

The redirection causes any output from the program to go to stderr instead of being read as a

05-Sep-2019 101

FVWM(1) Fvwm 2.6.9 FVWM(1)

sequence of commands by fvwm. PipeRead returns 1 if the given command could be executed or
-1 if not (see the section Conditional Commands for the meaning of return codes).

Read filename [quiet]
Causes fvwm to read commands from the file named filename. If the keyword Quiet follows the
command no message is produced if the file is not found. If the file name does not begin with a
slash (’/’), fvwm looks in the user’s data directory, then the system data directory. The user’s data
directory is by default $HOME/.fvwm. It can be overridden by exporting FVWM_USERDIR set to
any other directory. The Read command returns 1 if the given file could be read or -1 if not (see
the section Conditional Commands for the meaning of return codes).

SetEnv variable value
Set an environment variable to a new value, similar to the shell’s export or setenv command. The
variable and its value are inherited by processes started directly by fvwm. This can be especially
useful in conjunction with the FvwmM4 module. For example:

SetEnv height HEIGHT

makes the FvwmM4 set variable HEIGHT usable by processes started by fvwm as the
environment variable $height. If value includes whitespace, you should enclose it in quotes. If no
value is given, the variable is deleted.

Silent command
A number of commands require a window to operate on. If no window was selected when such a
function is invoked the user is asked to select a window. Sometimes this behavior is unwanted, for
example if the function was called by a module and the window that was selected at first does not
exist anymore. You can prevent this by putting Silent in front of the fvwm command. If a
function that needs a window is called with Silent without a window selected, it simply returns
without doing anything. If Silent is used on a user defined function it affects all function and sub
function calls until the original function exits.

Another usage of Silent is with binding commands Key, PointerKey and Mouse, this disables
error messages.

Silent also disables the error message for non-existent commands. Note: This command is treated
as a prefix to its command. Expansion of the command line is done as if Silent was not there.

Examples:

Silent Move 0 0
Silent User_defined_function
do not complain on keyboards without "Help" key
Silent Key Help R A Popup HelpMenu

UnsetEnv [variable]
Unset an environment variable, similar to shell’s export or unsetenv command. The variable then
is removed from the environment array inherited by processes started directly by fvwm.

Wait window
This command is intended to be used in fvwm functions only. It causes execution of a function to
pause until a new window matching window appears. This can be a window’s name, class, or
resource string. It may contain the wildcards ’*’ and ’?’, which are matched in the usual Unix
filename manner. This is particularly useful in the "InitFunction" if you are trying to start
windows on specific desktops:

AddToFunc InitFunction
+ I Exec exec xterm -geometry 80x64+0+0
+ I Wait xterm
+ I GotoDesk 0 2
+ I Exec exec xmh -font fixed -geometry \

05-Sep-2019 102

FVWM(1) Fvwm 2.6.9 FVWM(1)

507x750+0+0
+ I Wait xmh
+ I GotoDesk 0 0

The above function starts an xterm on the current desk, waits for it to map itself, then switches to
desk 2 and starts an xmh. After the xmh window appears control moves to desk 0.

Fvwm remains partially functional during a wait, but any input from the modules is queued up and
processed only after the window appears or the command is aborted. For example, windows can
not be focused with FvwmIconMan or FvwmPager during a wait.

You can escape from a Wait pause by pressing Ctrl-Alt-Escape (where Alt is the first modifier). To
redefine this key sequence see the EscapeFunc command.

Conditional Commands
Conditional commands are commands that are only executed if certain conditions are met. Most
conditional commands work on windows, like Next, ThisWindow or All. There is one conditional
command, Test, that works on global conditions unrelated to windows. The syntax of the conditions is
described below. For readability, the list of conditions is located at the end of this section.

Return Codes
All commands in this section (unless specifically stated for the command) also have a return code
that can be 1 (if the condition was met) or 0 (if the condition was not met). Some commands may
return -1 which means that an error occurred and the return code is useless. The Break command
returns -2. Additionally, the return codes of commands run in a complex functions are passed to
the invoking complex function. The return code is used by the TestRc command. Please refer to
the commands’ description for examples. The return code can also be accessed through the
variable $[cond.rc]. Non conditional commands do not modify the return code of the last
conditional command. Important note: return codes are only defined inside functions created with
the AddToFunc command and are not inherited by sub functions. To run a command without
altering the return code, the KeepRc command can be used.

The Ring of Windows
Fvwm stores windows in a ring internally. Think of the focused window as a cursor on the current
position in the ring. The Next command and many other commands search forwards through the
ring for a matching window, and Prev searches backwards. The windows in the ring are either
ordered by creation time (if the !FPSortWindowlistByFocus, NeverFocus or MouseFocus styles are
used) or by the last time they had the focus.

List of Conditional Commands
All [options] [(conditions)] command

Execute command on all windows meeting the conditions. It returns 1 if any window
matches the condition and 0 otherwise. The execution starts at the top of the window ring
and continues towards the bottom. The options can be any combination of Reverse and
UseStack. If the option Reverse is given the execution order is reversed. The option
UseStack makes All use the stacking order instead of the window ring when walking
through windows. See the Conditions section for a list of conditions.

This command implies the conditions CirculateHit, CirculateHitIcon and
CirculateHitShaded. They can be turned off by specifying !CirculateHit etc. explicitly.

Any [(conditions)] command
Performs command if any window which satisfies all conditions exists. The command is
run in the context of the root window. See the Conditions section for a list of conditions.

Break [levels]
If the break command is used in a function, function execution is terminated immediately.
Further commands of the function are not processed. Normally, all nested invocations of
complex functions are left. An optional integer number levels may be given to break out
of the given number of nested functions and continue execution of a higher level function.

05-Sep-2019 103

FVWM(1) Fvwm 2.6.9 FVWM(1)

The Break command always has the return code -2. Example:

AddToFunc PickWindowRaiseAndDeiconify
+ I Pick
+ I TestRc (Error) Break
+ I Raise
+ I Iconify off

Current [(conditions)] command
Performs command on the currently focused window if it satisfies all conditions. See the
Conditions section for a list of conditions.

This command implies the conditions CirculateHit, CirculateHitIcon and
CirculateHitShaded. They can be turned off by specifying !CirculateHit etc. explicitly.

Direction [FromPointer] direction [(conditions)] command
Performs command (typically Focus) on a window in the given direction which satisfies
all conditions. Normally, the center of the currently focused window or the context
window in which the command was invoked is taken as the starting point. Lacking such
a window, or when the FromPointer option is given, the current position of the pointer is
taken as the starting point. The direction may be one of "North", "Northeast", "East",
"Southeast", "South", "Southwest", "West", "Northwest" and "Center". Which window
Direction selects depends on angle and distance between the center points of the
windows. Closer windows are considered a better match than those farther away. The
Center direction simply selects the window closest to the starting point. Returns -1 if an
invalid direction was given. See the Conditions section for a list of conditions.

KeepRc command
Runs the command but does not alter the return code of the previous command. Note:
KeepRc is treated as a prefix to its command. Expansion of the command line is done as
if KeepRc was not there.

Next [(conditions)] command
Performs command (typically Focus) on the next window which satisfies all conditions.
If the command is running in a window context, it starts looking for a matching window
from there. Otherwise it starts at the focused window. See Conditions section for a list
of conditions.

None [(conditions)] command
Performs command if no window which satisfies all conditions exists. The command is
run in the context of the root window. Returns 1 if no window matches the conditions
and 0 otherwise. See Conditions section for a list of conditions.

This command implies the conditions CirculateHit, CirculateHitIcon and
CirculateHitShaded. They can be turned off by specifying !CirculateHit etc. explicitly.

NoWindow command
Performs command, but removes the window context if any. This is not really a
conditional command, but a prefix that may be useful in menu items that should operate
without a window even if such menu is bound to window decorations.

Pick [(conditions)] command
Pick works like Function if invoked in the context of a window. If invoked in the root
window, it first asks the user to pick a window and then executes the command in the
context of that window. This avoids annoying multiple selections with complex
functions. The command is executed only if the given conditions are met. Returns -1 if
no window was selected. See Conditions section for a list of conditions.

This command implies the conditions CirculateHit, CirculateHitIcon and
CirculateHitShaded. They can be turned off by specifying !CirculateHit etc. explicitly.

05-Sep-2019 104

FVWM(1) Fvwm 2.6.9 FVWM(1)

PointerWindow [(conditions)] command
Performs command if the window under the pointer satisfies all conditions. Returns -1 if
there is no window under the pointer. See Conditions section for a list of conditions.

This command implies the conditions CirculateHit, CirculateHitIcon and
CirculateHitShaded. They can be turned off by specifying !CirculateHit etc. explicitly.

Prev [(conditions)] command
Performs command (typically Focus) on the previous window which satisfies all
conditions. If the command is running in a window context, it starts looking for a
matching window from there. Otherwise it starts at the focused window. See Conditions
section for a list of conditions.

ScanForWindow [FromPointer] dir1 dir2 [(conditions)] command
Performs command (typically Focus) on a window in the given direction which satisfies
all conditions. Normally, the center of the currently focused window or the context
window in which the command was invoked is taken as the starting point. Lacking such
a window, or when the FromPointer option is given, the current position of the pointer is
taken as the starting point. The direction dir1 may be one of "North", "NorthEast",
"East", "SouthEast", "South", "SouthWest", "West", and "NorthWest". Which window
ScanForWindow selects depends first on the position along the primary axis given by
dir1. If any windows have the exact same coordinate along the primary axis, the
secondary direction is used to order the windows. The direction dir2 may be one of the
same set of values as dir1. If dir2 is not perfectly perpendicular to dir1, ScanForWindow
returns a failure. When using ScanForWindow repeatedly with the same arguments, it is
guaranteed that all windows matching the conditions will eventually be found. If the
focus reaches a limit along the primary axis, it will wrap around to the opposite side.
Returns -1 if an invalid direction was given. See Conditions section for a list of
conditions.

Test [(test-conditions)] command
Performs command if all test-conditions are satisfied. The test-conditions are keywords
with possible arguments from the list below and are separated by commas or whitespace.
They include: Version operator x.y.z, EnvIsSet varname, EnvMatch varname pattern,
EdgeHasPointer direction, EdgeIsActive direction, Start, Init, Restart, Exit, Quit,
ToRestart, True, False, F, R, W, X and I. A test-condition prefixed with "!" is negated.

The Version operator x.y.z test-condition is fulfilled if the logical condition of the
expression is true. Valid operator values are: >=, >, <=, <, == and !=.

Example:

Test (Version >= 2.5.11) Echo 2.5.11 or later.

The EnvIsSet varname test-condition is true if the given environment variable is set. The
EnvMatch varname pattern test-condition is true if pattern matches the given
environment or infostore variable value. (See InfoStoreAdd). The pattern may contain
special "*" and "?" chars. The "varname" is coded without the leading dollar sign ($).

The EdgeHasPointer [direction] test-condition is true if the edge in the given direction
currently contains the pointer. The EdgeIsActive [direction] test-condition is true if the
edge in the given direction currently is active. An edge is active, and can contain a
pointer if either a command is bound to it or edge scroll is available in that direction. The
direction may be one of
Any, North, Top, Up, West, Left, South, Bottom,
Down, Right and East. If no direction is specified Any is assumed.

The Start test-condition is the same as either Init or Restart. It is only true on startup or
restart prior and during StartFunction execution. The Exit test-condition is the same as
either Quit or ToRestart. It is only valid on shutdown during ExitFunction function

05-Sep-2019 105

FVWM(1) Fvwm 2.6.9 FVWM(1)

execution.

The True and False test-conditions are unconditionally true and false.

Additionally, if a test-condition name is not recognized, the Error return code is set and
the command is not executed.

The F file, R file, W file, X file and I file test-conditions test for existence of the given
[F]ile (possibly with [R]ead/[W]rite permissions), e[X]ecutable (in $PATH), or the
[I]mage (in ImagePath).

Example:

AddToFunc StartFunction I Test (Init) Exec exec xterm

AddToFunc VerifyVersion
+ I Test (Version 2.5.*) Echo 2.5.x detected
+ I TestRc (NoMatch) \

Test (!Version 2.6.*) Echo Future version
+ I TestRc (NoMatch) \

Echo 2.6.x is detected

Test (F $[FVWM_USERDIR]/local-config) Read local-config
Test (X xterm-utf16) Exec exec xterm-utf16

TestRc [([!]returncode)] command
Performs command if the last conditional command returned the value returncode.
Instead of the numeric values 0 (no match), 1 (match), -1 (error), and -2 (break) the
symbolic names "NoMatch", "Match", "Error" and "Break" can be used. If no returncode
is given, the default 0 is assumed. If the return code is prefixed with ’!’, the command is
executed if returncode does not match the value returned by the conditional command.
The TestRc command can only be used inside functions. If the command is another
conditional command, the previous return code is replaced by the new one. Example:

AddToFunc ToggleXterm
+ I All (my_xtermwindow) Close
+ I TestRc (NoMatch) Exec xterm -T my_xtermwindow

ThisWindow [(conditions)] command
ThisWindow executes the specified command in the context of the current operand
window. If there is no operand window (it is invoked in the root window), the command
is ignored. ThisWindow is never interactive. The command is executed only if the given
conditions are met. It returns -1 if used outside a window context. See Conditions
section for a list of conditions.

This command implies the conditions CirculateHit, CirculateHitIcon and
CirculateHitShaded. They can be turned off by specifying "!CirculateHit" etc. explicitly.

WindowId [id] [(conditions)] | [root [screen]] command
The WindowId command looks for a specific window id and runs the specified command
on it. The second form of syntax retrieves the window id of the root window of the given
screen. If no screen is given, the current screen is assumed. The window indicated by id
may belong to a window not managed by fvwm or even a window on a different screen.
Although most commands can not operate on such windows, there are some exceptions,
for example the WarpToWindow command. Returns -1 if no window with the given id
exists. See Conditions section for a list of conditions.

This command implies the conditions CirculateHit, CirculateHitIcon and
CirculateHitShaded. They can be turned off by specifying !CirculateHit etc. explicitly.

05-Sep-2019 106

FVWM(1) Fvwm 2.6.9 FVWM(1)

Examples:

WindowId 0x34567890 Raise
WindowId root 1 WarpToWindow 50 50
WindowId $0 (Silly_Popup) Delete

In the past this command was mostly useful for functions used with the WindowList
command, or for selective processing of FvwmEvent calls (as in the last example), but
currently these handler functions are called within a window context, so this command is
not really needed in these cases. Still it may be useful if, for example, the window id
should be stored in the environment variable for a further proceeding.

Pick SetEnv BOOKMARKED_WINDOW $[w.id]
WindowId $[BOOKMARKED_WINDOW] WarpToWindow

Conditions
The conditions that may be given as an argument to any conditional command are a list of
keywords separated by commas, enclosed in parentheses. Unless stated otherwise, conditional
commands accept all the conditions listed below. Note that earlier versions of fvwm required the
conditions to be separated by whitespace instead of commas and enclosed in brackets instead of
parentheses (this is still supported for backward compatibility).

In addition, the conditions may include one or more window names to match to. If more than one
window name is given, all of them must match. The window name, icon name, class, and resource
are considered when attempting to find a match. Each name may include the wildcards ’*’ and
’?’, and may consist of two or more alternatives, separated by the character ’|’, which acts as an
OR operator. (If OR operators are used, they must not be separated by spaces from the names.)
Each window name can begin with ’!’, which prevents command if any of the window name, icon
name, class or resource match. However, ’!’ must not be applied to individual names in a group
separated by OR operators; it may only be applied to the beginning of the group, and then it
operates on the whole group.

Examples:

Next ("Netscape|konqueror|Mozilla*") WarpToWindow 99 90

This goes to the next web browser window, no matter which of the three named web browsers is
being used.

Next ("Mozilla*", "Bookmark*") WarpToWindow 99 90

This goes to Mozilla’s bookmark manager window, ignoring other Mozilla windows and other
browsers’ bookmark windows.

All ("XTerm|rxvt", !console) Iconify

This iconifies all the xterm and rxvt windows on the current page, except that the one named
"console" (with the -name option to xterm) is excluded.

Next (!"FvwmPager|FvwmForm*|FvwmButtons") Raise
Next (!FvwmPager, !FvwmForm*, !FvwmButtons) Raise

These two commands are equivalent; either one raises the next window which is not one of the
named fvwm modules.

Any condition can be negated by using a an exclamation mark (’!’) directly in front of its name.

AcceptsFocus, AnyScreen, CirculateHit, CirculateHitIcon, CirculateHitShaded, Closable,
CurrentDesk, CurrentGlobalPage, CurrentGlobalPageAnyDesk, CurrentPage,
CurrentPageAnyDesk, CurrentScreen, Desk, FixedPosition, FixedSize, Focused, HasHandles,

05-Sep-2019 107

FVWM(1) Fvwm 2.6.9 FVWM(1)

HasPointer, Iconic, Iconifiable, Layer [n], Maximizable, Maximized, Overlapped, PlacedByButton
n, PlacedByButton3, PlacedByFvwm, Raised, Shaded, State n, Sticky, StickyAcrossDesks,
StickyAcrossPages, StickyIcon, StickyAcrossDesksIcon, StickyAcrossPagesIcon, Transient, Visible.

The AcceptsFocus condition excludes all windows that do not want the input focus (the application
has set the "Input hints" for the window to False) and do not use the Lenience option of the Style
command. Also, all windows using the NeverFocus style are ignored. Note: !Lenience is
equivalent to the deprecated option NoLenience.

With the AnyScreen condition used together with any of the Current... conditions, windows that
do not intersect the Xinerama screen containing the mouse pointer are considered for a match too.
For example:

Focus next window on current page,
regardless of Xinerama screen
Next (CurrentPage, AnyScreen) Focus

The CirculateHit and CirculateHitIcon options override the CirculateSkip and CirculateSkipIcon
Style attributes for normal or iconic windows. The CirculateHitShaded option overrides the
CirculateSkipShaded Style. All three options are turned on by default for the Current command.
They can be turned off by specifying !CirculateHit etc. explicitly. Note: Do not confuse these
conditions with the style options of the same name. Specifically,

Style foo CirculateSkip
Next (foo, CirculateHit) ...

is not the same as

Style foo CirculateHit ...
Next (foo)

The prior selects windows with the name foo only in the Next command. In the second example,
these windows are always matched in all conditional commands.

The Closable condition matches only windows that are allowed to be closed.

The CurrentDesk condition matches only windows that are on the current desk.

The CurrentGlobalPage condition matches only windows that are on the current page of the
current desk, regardless of whether Xinerama support is enabled or not. This condition implicitly
activates the CurrentDesk condition.

The CurrentGlobalPageAnyDesk condition matches only windows that are on the current page of
any desk, regardless of whether Xinerama support is enabled or not.

The CurrentPage condition matches only windows that are on the current page of the current desk.
If Xinerama support is enabled, it only matches windows that are at least partially on the
Xinerama screen containing the mouse pointer. This condition implicitly activates the
CurrentDesk condition.

The CurrentPageAnyDesk and CurrentScreen conditions matches only windows that are on the
current page of any desk. If Xinerama support is enabled, they only match windows that are at
least partially on the Xinerama screen containing the mouse pointer.

The Screen [n] condition matches only windows which are on the specified Xinerama screen.

The Desk [n] condition matches only windows which are on the specified desk.

The FixedPosition condition excludes all windows that do not have a fixed position, either set
through WM hints or the Style option FixedPosition. Example:

DestroyFunc ToggleFixedGeometry
AddToFunc ToggleFixedGeometry

05-Sep-2019 108

FVWM(1) Fvwm 2.6.9 FVWM(1)

+ I Pick (FixedPosition) \
WindowStyle VariablePosition, VariableSize

+ I TestRc (NoMatch) WindowStyle FixedPosition, FixedSize

The FixedSize condition excludes all windows that do not have a fixed size, either set through WM
hints or the Style option FixedSize.

The Focused matches on the window that currently has the keyboard focus. This is not useful for
the Current command but can be used with the other conditional commands.

The HasHandles condition excludes all windows that do not have resize handles.

The HasPointer condition excludes all windows that do not contain the pointer.

The Iconic condition matches only iconic windows.

The Iconifiable condition matches only windows that are allowed to be iconified.

The Layer [n] condition matches only windows on the specified layer. The optional argument of
the Layer condition defaults to the layer of the focused window. The negation !Layer switches off
the Layer condition.

The Maximizable condition matches only windows that are allowed to be maximized.

The Maximized condition matches only maximized windows.

The Fullscreen condition matches only fullscreen windows.

The Overlapped condition matches only windows that are overlapped by other windows on the
same layer (or unmanaged windows if the option RaiseOverUnmanaged of the BugOpts
command is used). Note that this condition can be slow if you have many windows or if
RaiseOverUnmanaged is used and the connection to the X server is slow.

The PlacedByButton n condition is fulfilled if the last interactive motion of the window (with the
Move command or as ManualPlacement) was ended by pressing mouse button n. Example:

Mouse 1 T A Function MoveWindow

DestroyFunc MoveWindow
AddToFunc MoveWindow
+ C Move
+ C ThisWindow (PlacedByButton 5) WindowShade off
+ C TestRc (Match) Maximize on 0 100
+ C ThisWindow (PlacedByButton 4) WindowShade on

The PlacedByButton3 condition has the same meaning as PlacedByButton 3. It remains only for
backward compatibility.

The PlacedByFvwm condition excludes all windows that have been placed manually or by using
the user or program position hint.

The Raised conditions matches only windows that are fully visible on the current viewport and not
overlapped by any other window.

The Shaded conditions matches only shaded windows (see WindowShade command).

The State n or !State n conditions match only windows with the specified integer state set (or
unset). See the State command for details. The argument may range from 0 to 31.

The Sticky, StickyAcrossDesks and StickyAcrossPages match only windows that are currently
sticky, sticky across all desks or sticky across all pages. Please refer to the Style options with the
same name and the commands Stick, StickAcrossDesks and StickAcrossPages for details.

The StickyIcon, StickyAcrossDesksIcon and StickyAcrossPagesIcon match only windows that
become sticky, sticky across all desks or sticky across all pages when they are in iconified state.

05-Sep-2019 109

FVWM(1) Fvwm 2.6.9 FVWM(1)

The Transient condition matches only windows that have the "transient" property set by the
application. This it usually the case for application popup menus and dialogs. The FvwmIdent
module can be used to find out whether a specific window is transient.

The Visible condition matches only windows that are at least partially visible on the current
viewport and not completely overlapped by other windows.

Module Commands
Fvwm maintains a database of module configuration lines in a form

*<ModuleName>: <Config-Resource>

where <ModuleName> is either a real module name or an alias.

This database is initially filled from config file (or from output of -cmd config command), and can be later
modified either by user (via FvwmCommand) or by modules.

When modules are run, they read appropriate portion of database. (The concept of this database is similar
to one used in X resource database).

Commands for manipulating module configuration database are described below.

* module_config_line
Defines a module configuration. module_config_line consists of a module name (or a module
alias) and a module resource line. The new syntax allows a delimiter, a colon and optional spaces,
between the module name and the rest of the line, this is recommended to avoid conflicts.

*FvwmPager: WindowBorderWidth 1
*FvwmButtons-TopRight: Geometry 100x100-0+0
*FvwmButtons-Bottom: Geometry +0-0

DestroyModuleConfig module_config
Deletes module configuration entries, so that new configuration lines may be entered instead. This
also sometimes the only way to turn back some module settings, previously defined. This changes
the way a module runs during a fvwm session without restarting. Wildcards can be used for
portions of the name as well.

The new non-conflicting syntax allows a delimiter, a colon and optional spaces between the
module name and the rest of the line. In this case a module name (or alias) can’t have wildcards.

DestroyModuleConfig FvwmButtons*
DestroyModuleConfig FvwmForm: Fore
DestroyModuleConfig FvwmIconMan: Tips*

KillModule modulename [modulealias]
Causes the module which was invoked with name modulename to be killed. The name may
include wildcards. If modulealias is given, only modules started with the given alias are killed.

kill all pagers
KillModule FvwmPager

Module FvwmEvent SoundEvent
KillModule FvwmEvent SoundEvent

Module modulename [moduleparams]
Specifies a module with its optional parameters which should be spawned. Currently several
modules, including FvwmButtons, FvwmEvent, FvwmForm, FvwmPager, FvwmScript
support aliases. Aliases are useful if more than one instance of the module should be spawned.
Aliases may be configured separately using * syntax. To start a module FvwmForm using an
alias MyForm, the following syntax may be used:

05-Sep-2019 110

FVWM(1) Fvwm 2.6.9 FVWM(1)

Module FvwmForm MyForm

At the current time the available modules (included with fvwm) are FvwmAnimate (produces
animation effects when a window is iconified or de-iconified), FvwmAuto (an auto raise module),
FvwmBacker (to change the background when you change desktops), FvwmBanner (to display a
spiffy XBM, XPM, PNG or SVG), FvwmButtons (brings up a customizable tool bar),
FvwmCommandS (a command server to use with shell’s FvwmCommand client), FvwmConsole
(to execute fvwm commands directly), FvwmCpp (to preprocess your config with cpp),
FvwmEvent (trigger various actions by events), FvwmForm (to bring up dialogs),
FvwmIconMan (a flexible icon manager), FvwmIdent (to get window info), FvwmM4 (to
preprocess your config with m4), FvwmPager (a mini version of the desktop), FvwmPerl (a Perl
manipulator and preprocessor), FvwmProxy (to locate and control obscured windows by using
small proxy windows), FvwmRearrange (to rearrange windows), FvwmScript (another powerful
dialog toolkit), These modules have their own man pages. There may be other modules out on
there as well.

Modules can be short lived transient programs or, like FvwmButtons , can remain for the duration
of the X session. Modules are terminated by the window manager prior to restarts and quits, if
possible. See the introductory section on modules. The keyword Module may be omitted if
modulename is distinct from all fvwm commands.

ModuleListenOnly modulename [moduleparams]
This command works like the Module command, but fvwm never sends any messages to the
module. This may be handy to write a module as a shell script that is triggered by external events
without the burden to answer packets sent by fvwm. For example, a module written as a shell
script may change labels of the FvwmButtons module to implement a simple clock.

ModulePath path
Specifies a colon separated list of directories in which to search for modules. To find a module,
fvwm searches each directory in turn and uses the first file found. Directory names on the list do
not need trailing slashes.

The ModulePath may contain environment variables such as $HOME (or ${HOME}). Further, a
’+’ in the path is expanded to the previous value of the path, allowing easy appending or
prepending to the path.

For example:

ModulePath ${HOME}/lib/fvwm/modules:+

The directory containing the standard modules is available via the environment variable
$FVWM_MODULEDIR.

ModuleSynchronous [Expect string] [Timeout secs] modulename
The ModuleSynchronous command is very similar to Module. Fvwm stops processing any
commands and user input until the module sends a string beginning with "NOP FINISHED
STARTUP" back to fvwm. If the optional Timeout is given fvwm gives up if the module sent no
input back to fvwm for secs seconds. If the Expect option is given, fvwm waits for the given
string instead. ModuleSynchronous should only be used during fvwm startup to enforce the
order in which modules are started. This command is intended for use with the (currently
hypothetical) module that should be in place before other modules are started.

Warning: It is quite easy to hang fvwm with this command, even if a timeout is given. Be extra
careful choosing the string to wait for. Although all modules in the fvwm distribution send back
the "NOP FINISHED STARTUP" string once they have properly started up, this may not be the
case for third party modules. Moreover, you can try to escape from a locked
ModuleSynchronous command by using the key sequence Ctrl-Alt-Escape (see the EscapeFunc).

05-Sep-2019 111

FVWM(1) Fvwm 2.6.9 FVWM(1)

ModuleTimeout timeout
Specifies how many seconds fvwm waits for a module to respond. If the module does not respond
within the time limit then fvwm kills it. timeout must be greater than zero, or it is reset to the
default value of 30 seconds.

SendToModule modulename string
Sends an arbitrary string (no quotes required) to all modules, whose alias or name matching
modulename, which may contain wildcards. This only makes sense if the module is set up to
understand and deal with these strings though. Can be used for module to module communication,
or implementation of more complex commands in modules.

Session Management Commands
Quit

Exits fvwm, generally causing X to exit too.

QuitScreen
Causes fvwm to stop managing the screen on which the command was issued.

Restart [window_manager [params]]
Causes fvwm to restart itself if window_manager is left blank, or to switch to an alternate window
manager (or other fvwm version) if window_manager is specified. If the window manager is not
in your default search path, then you should use the full path name for window_manager.

This command should not have a trailing ampersand. The command can have optional parameters
with simple shell-like syntax. You can use ˜ (is expanded to the user’s home directory) and
environmental variables $VAR or ${VAR}. Here are several examples:

Key F1 R N Restart
Key F1 R N Restart fvwm -s
Key F1 R N Restart ˜/bin/fvwm -f $HOME/.fvwm/main
Key F1 R N Restart fvwm1 -s -f .fvwmrc
Key F1 R N Restart xterm -n ’"X console"’ \
-T \"X\ console\" -e fvwm1 -s

If you need a native restart, we suggest only to use Restart command without parameters unless
there is a reason not to. If you still use an old command ’Restart fvwm2’ that was correct in 2.2.x,
all current command line arguments are lost. On a restart without parameters or with
--pass-args, they are preserved. Here are some cases when ’Restart fvwm2’ or ’Restart fvwm’
cause troubles:

* running fvwm under a session manager
* running fvwm with multi headed displays
* having command line arguments, like
-f themes-rc or -cmd

* if the first fvwm2 in the $PATH is a
different one

This is why we are issuing a warning on an old usage. If you really want to restart to fvwm with
no additional arguments, you may get rid of this warning by using "Restart fvwm -s" or "Restart
/full/path/fvwm".

Note, currently with multi headed displays, restart of fvwms on different screens works
independently.

Restart --pass-args window_manager
The same as Restart without parameters but the name for the current window manager is replaced
with the specified window_manager and original arguments are preserved.

This command is useful if you use initial arguments like

05-Sep-2019 112

FVWM(1) Fvwm 2.6.9 FVWM(1)

-cmd FvwmCpp

and want to switch to another fvwm version without losing the initial arguments.

Restart --dont-preserve-state [other-params]
The same as

Restart [other-params]

but it does not save any window states over the restart.

Without this option, Restart preserves most per-window state by writing it to a file named
.fs-restart-$HOSTDISPLAY in the user’s home directory.

SaveSession
Causes a session manager (if any) to save the session. This command does not work for xsm, it
seems that xsm does not implement this functionality. Use Unix signals to manage xsm remotely.

SaveQuitSession
Causes a session manager (if any) to save and then shutdown the session. This command does not
work for xsm, it seems that xsm does not implement this functionality. Use Unix signals to
manage xsm remotely.

Colorsets
Colorsets are a powerful method to control colors. Colorsets create appearance resources that are shared by
fvwm and its modules. When a colorset is modified all parts of fvwm react to that change. A colorset
includes a foreground color, background color, shadow and highlight color (often based on the background
color), background face (this includes images and all kinds of gradients). There is a way to render
background face and specify other color operations.

In the 2.4.x versions a special module FvwmTheme was introduced to manage colorsets. Starting with the
2.5.x beta version, the FvwmTheme functionality was moved to the core fvwm, so this module became
obsolete. In 2.6.7 the FvwmTheme module was removed.

The old syntax:

DestroyModuleConfig FvwmTheme: *
*FvwmTheme: Colorset 0 fg black, bg rgb:b4/aa/94
*FvwmTheme: Colorset 1 fg black, bg rgb:a1/b2/c8

corresponds to the new syntax:

CleanupColorsets
Colorset 0 fg black, bg rgb:b4/aa/94
Colorset 1 fg black, bg rgb:a1/b2/c8

Colorset num [options]
Creates or modifies colorset num. Colorsets are identified by this number. The number can start at
zero and can be a very large number.

Warning: The highest colorset number used determines memory consumption. Thus, if you define
’Colorset 100000’, the memory for 100001 colorsets is used. Keep your colorset numbers as
small as possible.

By convention, colorsets are numbered like this:

0 = Default colors
1 = Inactive windows
2 = Active windows
3 = Inactive menu entry and menu background
4 = Active menu entry

05-Sep-2019 113

FVWM(1) Fvwm 2.6.9 FVWM(1)

5 = greyed out menu entry (only bg used)
6 = module foreground and background
7 = hilight colors

If you need to have more colors and do not want to reinvent the wheel, you may use the
convention used in fvwm-themes, it defines the meaning of the first 40 colorsets for nearly all
purposes:

http://fvwm-themes.sourceforge.net/doc/colorsets

Each colorset has four colors, an optional pixmap and an optional shape mask. The four colors are
used by modules as the foreground, background, highlight and shadow colors. When a colorset is
created it defaults to a foreground of black and background of gray. The background and
foreground are marked as "average" and "contrast" (see later) so that just specifying a pixmap or
gradient gives sensible results.

options is a comma separated list containing some of the keywords: fg, Fore, Foreground, bg,
Back, Background, hi, Hilite, Hilight, sh, Shade, Shadow, fgsh, Pixmap, TiledPixmap,
AspectPixmap, Transparent, RootTransparent, Shape, TiledShape, AspectShape, NoShape,
?Gradient, Tint, fgTint, bgTint, Alpha, fgAlpha, Dither, NoDither, IconTint, IconAlpha, Plain.

fg, Fore and Foreground take a color name as an argument and set the foreground color. The
special name Contrast may be used to select a color that contrasts well with the background color.
To reset the foreground color to the default value you can simply omit the color name.

bg, Back and Background take a color name as an argument and set the background color. It also
sets the highlight and shadow colors to values that give a 3d effect unless these have been
explicitly set with the options below. The special name Average may be used to select a color that
is the average color of the pixmap. If the pixmap is tinted with the Tint option, the tint is not taken
in account in the computation of the average color. You should use the bgTint option to get the
"real" average color. The background color is reset to the default value if the color name is
omitted.

hi, Hilite and Hilight take a color name as an argument and set the highlight color. If the highlight
color is not explicitly set, the default is to calculate it from the background color. To switch back
to the default behavior the color name can be omitted.

sh, Shade and Shadow take a color name as an argument and set the shadow color. If the shadow
color is not explicitly set, the default is to calculate it from the background color. To switch back
to the default behavior the color name can be omitted.

fgsh takes a color name as an argument and sets the color used by the shadowing font effect. See
the Font Shadow Effects section of the fvwm man page. By default this color is computed from
the foreground and background colors. To switch back to the default the color name can be
omitted.

Pixmap, TiledPixmap and AspectPixmap take a file name as an argument, search the ImagePath
and use it as the background pixmap. Any transparent parts are filled with the background color.
Not specifying a file name removes any existing image from the colorset. TiledPixmap produces
repeated copies of the image with no scaling, Pixmap causes the image to be stretched to fit
whatever object the colorset is applied to and AspectPixmap stretches to fit but retains the image
aspect ratio.

Transparent creates a transparent background pixmap. The pixmap is used as a window
background to achieve root transparency. For this you should use the ParentalRelativity option to
the Style command. A subsequent root background change may be detected or not, this depends
on the program used to set the background. If you use fvwm-root, xsetbg (xli), FvwmBacker
with solid or colorset colors or a recent version of Esetroot (>= 9.2) a background change is
detected. If background changes are not detected (e.g., if you use xv or xsetroot) you can force
detection by using the -d option of fvwm-root:

05-Sep-2019 114

FVWM(1) Fvwm 2.6.9 FVWM(1)

xv -root -quit mybg.png; fvwm-root -d

Due to the way X implements transparency no guarantees can be made that the desired effect can
be achieved. The application may even crash. If you experience any problems with this option, do
not use it.

Using outline move and resize (see the OpaqueMoveSize command and the ResizeOpaque Style
option) as well as setting the WindowShadeShrinks style may help. The transparency achieved
with Transparent depends on whether the colorset is applied to the foreground or the background
of a window. In the second case the transparency is relative to the parent window of the window
on which the colorset is defined. For example:

Colorset 12 VGradient 200 grey30 grey60
Colorset 17 Transparent
*FvwmIconMan: Colorset 12
*FvwmIconMan: PlainColorset 17

gives an IconMan with a vertical grey gradient background and the buttons use the background (by
transparency). To obtain a (root) transparent IconMan:

Colorset 12 Transparent
Colorset 17 Transparent
Colorset 18 Transparent
Colorset 19 Transparent

*FvwmIconMan: Colorset 12
*FvwmIconMan: PlainColorset 17
*FvwmIconMan: FocusColorset 18
*FvwmIconMan: IconColorset 19

The Colorset IconMan option defines the IconMan window background, but the PlainColorset and
the FocusColorset are drawn on the foreground. So, the transparency of the IconMan buttons is
achieved by drawing nothing. Now if this IconMan is swallowed in an FvwmButtons as:

FvwmButtons:(Colorset 10, Swallow "FvwmIconMan" ’FvwmIconMan’)

then, FvwmIconMan becomes a child of FvwmButtons and it is transparent relative to
FvwmButtons. So, in this case FvwmIconMan uses Colorset 10 as background. If you want
root transparency use the RootTransparent option. FvwmButtons FvwmIconMan, and
FvwmIdent, are relatively simple. There is one main colorset option which defines the
background of the window and the other colorsets (if any) are drawn on the foreground. The case
of FvwmProxy is simpler, the two colorsets refer to the window backgrounds. FvwmPager is
more complicated as almost everything in the pager are windows with some parental relations (the
mini windows are the child and the desktops are the parents and all this is complicated by the
hilighted page). So, the colorsets apply to the background of these windows. You should
experiment. For FvwmForm and FvwmScript the situation is similar. There is a main window (a
child of the root window) which corresponds to the main colorset and most of the widgets are
windows which are children of the main window. Tint may work or not with the Transparent
option. When the colorset is drawn on the foreground Tint should work. In some cases, tinting
may be very slow. Tinting may work with fvwm menu (without animation). Tinting may work
better if your X server has backing store enabled (try xdpyinfo to see if this the case). There is a
chance that the backing store support of your X server does not work well with the terrible hack
used to Tint the ParentRelative Pixmap. So, to get tinted root transparency it is more safe to use
the RootTransparent option.

RootTransparent [buffer] creates a root transparent background. To make this option work, you
must use an Esetroot compatible program, fvwm-root with the --retain-pixmap option or
FvwmBacker with the RetainPixmap option (and colorset or solid backgrounds). The buffer

05-Sep-2019 115

FVWM(1) Fvwm 2.6.9 FVWM(1)

keyword is useful only when the Tint option is used too. This speeds up creation of windows
which use the colorset (useful for fvwm menus) at the cost of memory usage. It also speeds up
opaque move and resize which can be unacceptably slow without buffer. However, this option
may add a lot of memory to your X server (depending on the size of the image used to set the
background). In summary, using outline move and resize for modules which use such a colorset
may be a good idea.

Shape, TiledShape and AspectShape take a file name as an argument, search the ImagePath and
use it as the shape bitmap. TiledShape produces repeated copies of the bitmap with no scaling,
Shape causes the bitmap to be stretched to fit whatever object the colorset is applied to and
AspectShape stretches to fit but retains the bitmap aspect ratio. If the file is a pixmap in xpm
format the shape mask (all opaque pixels) of the pixmap is used. For png and svg images, the
shape mask is equivalent to all not completely transparent pixels (alpha > 0).

Warning
Due to the way X11 implements shapes you cannot take back making windows shaped. You may
have to restart fvwm or the shaped application.

?Gradient ... creates a pixmap and stretches it to fit the window. ?Gradient may be one of
HGradient, VGradient, DGradient, BGradient, SGradient, CGradient, RGradient or YGradient.
The gradient types are as follows: H is horizontal; V is vertical; D is diagonal from top left to
bottom right; B is a backwards diagonal from bottom left to top right; S is concentric squares; C is
concentric circles; R is a radar like pattern and Y is a Yin Yang style (but without the dots). Please
refer to the Color Gradients section for the syntax of gradients.

Tint takes 2 arguments, a color and a percentage between 0 and 100. It causes the image defined
using ?Pixmap or ?Gradient to be tinted with the specified color using the percentage. If the
image is transparent Tint tints only the image part. Unfortunately, a colorset background specified
using the Transparent option can give strange results. See the Transparent option for details.
With no arguments this option removes the tint.

fgTint takes 2 arguments, a color and a percentage between 0 and 100. It causes the color defined
using fg to be tinted with the specified color using the percentage. With no arguments this option
removes the tint.

bgTint takes 2 arguments, a color and a percentage between 0 and 100. It causes the color defined
using bg to be tinted with the specified color using the percentage. If the sh and hi colors are not
specified, they are recomputed from the tinted bg color. With no arguments this option removes
the tint.

Alpha takes a percentage between 0 and 100 as an argument. It causes fvwm to merge the image
defined using ?Pixmap or ?Gradient with the bg color using the percentage. If the percentage is 0
the image is hidden and if it is 100 the image is displayed as usual (no merge). The default is 100
and it is restored if no argument is given.

fgAlpha takes a percentage between 0 and 100 as an argument. It causes fvwm to merge the text
and the colorset background using the percentage. If the percentage is 0 the text is hidden and if it
is 100 the text is displayed as usual (no merge). This option has an effect only with fonts loaded
by Xft, see the Font Names and Font Loading section. The default is 100 and it is restored if no
argument is given.

Dither causes fvwm to dither the image defined using ?Pixmap or ?Gradient. This is useful only
with displays with depth less than or equal to 16 (i.e., on displays which can only display less than
65537 colors at once). The dithering effect lets you simulate having more colors available that you
actually have. NoDither causes fvwm to do not dither the images. Dither is the default if the
depth is less than or equal to 8 (a screen with 256 colors or less). In depth 15 (32768 colors) and
16 (65536 colors), the default is NoDither, however this effect can be useful with images which
contain a lot of close colors. For example a fine gradient looks more smooth.

IconTint takes 2 arguments, a color and a percentage between 0 and 100. It causes fvwm or a

05-Sep-2019 116

FVWM(1) Fvwm 2.6.9 FVWM(1)

module to tint the "icons" which are rendered into the colorset background with the specified color
using a percentage. Here "icons" means, fvwm Icons, fvwm menu icons, MiniIcons which
represent applications in various modules, images loaded by modules (e.g., images specified by
the Icon FvwmButtons button option) ...etc. With no arguments this option removes the icon tint.

IconAlpha takes a percentage between 0 and 100 as an argument. It causes fvwm to merge the
"icons" which are rendered into the colorset background using this percentage. The default is 100
and it is restored if no argument is given.

Note: It is equivalent to use "Tint a_color rate" and "Alpha a" if a = 100 and the bg color is
a_color. This equivalence does not hold for IconAlpha and IconTint as the background can be an
image or a gradient (and not a uniform color background). However, in some cases you can
achieve (almost) the same effect by using IconTint in the place of IconAlpha. This is preferable
as, in general, IconAlpha generates more redrawing than IconTint.

NoShape removes the shape mask from the colorset while Plain removes the background pixmap
or gradient.

Examples

Colorset 3 fg tan, bg navy

If necessary this creates colorsets 0, 1, 2 and 3 and then changes colorset 3 to have a foreground of
tan, a background of navy.

Colorset 3 bg "navy blue"

changes the background color of colorset 3 to navy blue. The foreground and pixmap are
unchanged.

Colorset 3 AspectPixmap large_murky_dungeon.xpm

causes depression.

Colorset 3 bg Average

Sets the background color and the relief colors to match the background pixmap. This is the
default setting but it must be used if a background color was specified and is now not required.

Colorset 3 YGradient 200 3 blue 1000 navy 1 blue 1000 navy

Adds a Yin Yang gradient background pixmap to colorset 3. If the background is set to average it
is recomputed along with the foreground if that is set to contrast.

#!/bin/sh
FvwmCommand "Colorset 7 fg navy, bg gray"
while true
do
FvwmCommand "Colorset 7 fg gray"
sleep 1
FvwmCommand "Colorset 7 fg navy"
sleep 1

done

Makes colorset 7 blink.

The color names used in colorsets are saved as fvwm variables which can be substituted in any
fvwm command. For example:

AddToFunc InitFunction
+ I Exec exec xterm -fg $[fg.cs0] -bg $[bg.cs0]

05-Sep-2019 117

FVWM(1) Fvwm 2.6.9 FVWM(1)

Where $[fg.cs0] is the foreground color of colorset zero. Please refer to the Command
Expansion section for more information.

CleanupColorsets
Resets a definition of all colorsets.

Color Gradients
A color gradient is a background that changes its color gradually from one hue to a different one.
Color gradients can be used by various commands and modules of fvwm. There are eight types of
gradients: HGradient is a horizontal gradient, VGradient is vertical, DGradient is diagonal from
top left to bottom right, BGradient is backwards diagonal from bottom left to top right,
SGradient is concentric squares, CGradient is concentric circles, RGradient is a radar like
pattern and YGradient is a Yin Yang style (but without the dots).

The color gradient syntax has two forms:

?Gradient colors start-color end-color

This form specifies a linear gradient. The arguments denote the total number of colors to allocate
(between 2 and 1000), the initial color and the final color.

Example:

TitleStyle VGradient 20 rgb:b8/ce/bc rgb:5b/85/d0

?Gradient colors segments color length color [length color] ...

The second form specifies a nonlinear gradient. The arguments are: the total number of colors to
allocate (between 2 and 1000), then the number of segments. For each segment, specify the
starting color, a relative length, then the ending color. Each subsequent segment begins with the
second color of the last segment. The lengths may be any non-negative integers. The length of
one segment divided by the sum of all segments lengths is the fraction of the colors that are used
for the segment.

Examples:

MenuStyle * \
MenuFace DGradient 128 2 lightgrey 50 blue 50 white

20% gradient from red to blue,
30% from blue to black,
50% from black to grey
MenuStyle * \

MenuFace DGradient 100 3 Red 20 Blue 30 Black 50 Grey

50% from blue to green, then
50% from yellow to red
Colorset 0 HGradient 128 3 Blue 1000 Green 1 Yellow 1000 Red

ENVIRONMENT
The environment variables that have an effect on how fvwm operates are the following:

DISPLAY
Fvwm starts on this display unless the -display option is given.

FVWM_MODULEDIR
Set by fvwm to the directory containing the standard fvwm modules.

FVWM_USERDIR
Used to determine the user’s data directory for reading and sometimes writing personal files. If this
variable is not already set, it is set by fvwm to $HOME/.fvwm, which is the default user’s data
directory.

05-Sep-2019 118

FVWM(1) Fvwm 2.6.9 FVWM(1)

SESSION_MANAGER
Fvwm tries to contact this session manager.

SESSION_MANAGER_NAME
This is used mainly to determine xsm running to work around its bug. If this variable is set to "xsm",
DiscardCommand is set as xsm expects it and not as XSMP requires. If you run fvwm under xsm, you
should set this variable to "xsm", otherwise old state files are not removed.

SM_SAVE_DIR
If this is set, fvwm saves its session data in this directory. Otherwise it uses $HOME. Note, the state
files are named .fs-?????? and normally are removed automatically when not used anymore.

AUTHORS
Robert Nation with help from many people, based on twm code, which was written by Tom LaStrange.
After Robert Nation came Charles Hines, followed by Brady Montz. Currently fvwm is developed by a
number of people on the fvwm-workers mailing list.

COPYRIGHT
Fvwm and all the modules, scripts and other files coming with the distribution are subject to the GNU
General Public License (GPL). Please refer to the COPYING file that came with fvwm for details.

BUGS
Bug reports can be sent to the fvwm-workers mailing list at <fvwm-workers@fvwm.org>

The official fvwm homepage is http://fvwm.org/.

05-Sep-2019 119

